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Chapter 4: The Bayesian brain

The sensory data received by the brain provides incomplete and noisy
information about the environment state. This chapter describes mod-
els of how the brain computes a probability distribution over (or point
estimate of) hidden states. We immediately run into the problem that
behavior seems to deviate from Bayes-optimal inference. These de-
viations can be understood through the lens of computational and
representational constraints on inference.

In this chapter, we will carve off a piece of the general decision-
theoretic setup introduced in Chapter 1. Specifically, we will ignore
actions and rewards, focusing only on the updating of beliefs about
hidden states (s) after observing data (x). This will set the stage for
subsequent chapters in which we integrate belief updating with
reward prediction and action selection. In this chapter, we focus on problems

where exact inference is possible. The
next chapter will consider approximate
inference algorithms applicable to a
broader range of problems.

As described in Chapter 1, the normative standard for belief up-
dating is Bayesian inference. The empirical question is whether the
brain is (approximately) Bayesian. We will start by considering hu-
man behavior in simple probability judgment tasks, which shows
systematic deviations from Bayesian inference. These deviations can
be understood in terms of computational resource constraints on be-
lief updating. We then consider what kinds of resource-constrained
algorithms could give rise to these patterns of behavior, how they
could be implemented using the neural building blocks introduced in
Chapter 2, and what empirical evidence supports this neural imple-
mentation.

We also analyze the phenomenon of repulsion from high prior
probability states in simple magnitude estimation tasks. This ap-
pears “anti-Bayesian” but in fact is consistent with Bayesian inference
under certain representational assumptions about how the brain
encodes magnitudes. We will examine neurophysiological data con-
sistent with these assumptions, and discuss how neural networks can
decode point estimates from the representations.

1 Is behavior Bayesian?

Answering this question is trickier than it might seem, because we
need to know what (if any) prior, likelihood, posterior, and utility
function the brain uses. One approach is to manufacture experimen-
tal tasks that tightly control all of these factors and impose them on
human subjects. This approach has the advantage of allowing us to
precisely answer the question, but it has the disadvantage of being



chapter 4 2

rather contrived, and it has been argued that people struggle with ex-
plicitly presented probability information (Gigerenzer and Hoffrage,
1995). We will first discuss one version of this approach (the urn
task), and then describe other tasks which rely on implicit probabil-
ity information learned through direct experience rather than verbal
communication.

1.1 The urn task

Consider the following stylized task. I show you two urns filled with
different compositions of green and yellow marbles (Figure 1). I
choose one of the urns with a probability known to you (0.4 for urn
A and 0.6 for urn B) and pull a marble from it. You get to see the
marble but you don’t get to see which urn I chose. Your task is to
report the probability that I chose urn A.

Which urn did       come from?

A
p(A) = 0.4

B
p(B) = 0.6

Figure 1: The urn task. Tasks like this
have been used in many experiments
with human subjects (e.g., Peterson
et al., 1965; Phillips and Edwards, 1966),
though differing in superficial details.

It’s mathematically useful to convert the posterior probability into
a “log odds” scale:

log
p(A| )

p(B| )
= log

p( |A)

p( |B) + log
p(A)

p(B)
, (1)

where the first term is the likelihood log odds and the second term
is the prior log odds. To quantitatively evaluate the Bayesian hypoth-
esis, we can generalize this equation to a more flexible model with
coefficients α and β (Grether, 1980):

y = α log
p( |A)

p( |B) + β log
p(A)

p(B)
, (2)

where y is the response generated by human subjects. When the
coefficients are fit to human response data, both are systematically
below 1 (Figure 2), although to a first approximation reaction to the
prior is close enough to 1 that we can safely ignore it. Thus, even in
this idealized setting with full information and tight experimental
control, people don’t perfectly execute Bayes’ rule. Although people
update in the correct direction, they systematically under-react to
the likelihood (i.e., the urn composition in this case). We will try to
understand under-reaction and related deviations from Bayesian
optimality in more detail.

The urn task is not representative of real-world inference problems
in two ways. First, all the relevant information is given explicitly to
subjects. In more realistic settings, this information often needs to be
acquired from experience interacting with the environment. Second,
the hypothesis space is very small compared to real-world problems.
Consider, for example, the problem of inferring the three-dimensional
configuration of a scene from the two-dimensional visual informa-
tion conveyed by the retina. We aren’t given explicit probabilities for
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Figure 2: Coefficient estimates from
a meta-analysis of human responses
in the urn task. The vertical lines
show meta-analytic estimates of the
coefficients. Adapted from Zhu et al.
(2023).

each possible scene configuration, and the space of configurations is
massive, precluding exhaustive enumeration. To understand prob-
abilistic inference in the brain, will we need to go beyond the naive
application of Bayes’ rule and study scalable approximate inference
algorithms (see next chapter).

1.2 Magnitude estimation

More realistic inference problems have been studied, with some
surprising results. Before describing these results, let’s talk about
what seems like a generic property of Bayesian inference: the pos-
terior mean should tend to be biased towards the prior mean. More
formally, the bias is defined as E[ŝ − s|s], where ŝ = E[s|x] is the
posterior mean. We expect bias to be positive whenever the state is
below the prior mean, s < E[s], and negative whenever the state is
above the prior mean, s > E[s]. Indeed, many studies do show a bias
towards the prior mean in simple magnitude estimation tasks (e.g.,
estimating the length of a line or the duration of a sound), sometimes
called the central tendency effect (Hollingworth, 1910; Petzschner et al.,
2015).
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Figure 3: Bayesian estimation for a
Gaussian model. The gray curve is the
prior distribution, p(s|s̄). The black
curve is the signal distribution, p(x|s).
The blue line is the posterior mean. The
top and bottom plots differ only in their
prior variance, σ2

s .

To make this concrete, let’s consider a simple Gaussian model
(Figure 3):

x ∼ N (s, σ2
x), s ∼ N (s̄, σ2

s ). (3)

The posterior mean is a convex combination of the signal x and the
prior mean s̄:

ŝ = wx + (1 − w)s̄, (4)

where

w =
σ2

s
σ2

x + σ2
s

(5)

is the signal sensitivity, which is larger when the signal noise vari-
ance is small relative to the prior variance. Using this expression, the
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bias is given by:

E[ŝ − s|s] = E[wx + (1 − w)s̄ − s|s] = (1 − w)(s̄ − s). (6)

This demonstrates that the prior mean attracts the posterior mean The central tendency effect is our first
glimpse of inductive bias: a preference
for some hypotheses over others before
observing data. This concept will show
up in several places throughout the
book.

(i.e., the bias is negative when the prior mean is less than s, and
positive when the prior mean is greater than s), and the strength of
this attraction is inversely proportional to the signal sensitivity.

One prediction of the model is that the central tendency effect
should be stronger when the signal noise variance is relatively large
and the prior variance is relatively small. Signal noise variance tends
to increase with magnitude, possibly due to a nonlinear transfor-
mation from objective to subjective magnitude (more on this later);
consistent with the model prediction, central tendency effects are
stronger for larger magnitudes (Xiang et al., 2021). The study by Xi-
ang et al. (2021) also found that increasing signal noise variance by
shorter stimulus durations strengthened the central tendency effect.
Similarly, the central tendency effect is strengthened by interposing a
delay between the stimulus and judgment, or by adding noise to the
stimulus (Olkkonen et al., 2014).

An empirical challenge to the Bayesian model of magnitude es-
timation comes from studies reporting human judgments that are
repulsed from the prior mean—apparently an “anti-Bayesian” bias.
For example, people judge a smaller object to be heavier than a larger
object with the same mass (the size-weight illusion, first described by
Charpentier, 1891). This seems to defy the prior that larger objects See Peters et al. (2016) and Wolf et al.

(2018) for more nuanced analyses of the
size-weight illusion that take density
into account.

tend to be more massive. Repulsive biases have also been reported
for orientation and spatial frequency judgments (Wei and Stocker,
2015). Taken at face value, these repulsive biases seem rather disas-
trous for Bayesian models of human inference.

2 Explaining deviations from Bayesian inference

We have seen that Bayesian inference matches behavior, at least qual-
itatively, in some ways but not in others. Can a resource-rational
theory do better? To answer this question, we need to specify the cost
function constraining the brain’s inference algorithm.

2.1 Resource-rational analysis of costly inference

Intuitively, under-reaction suggests that updating from the prior to
the (approximate) posterior is costly. To formalize this intuition, we
first replace the true posterior p(s|x) with an approximate posterior
q(s|x) in order to make explicit that we are no longer assuming exact
Bayesian inference. Next, we assume that the action a output deter-
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ministically by policy π is the approximate posterior: a = q. Finally, Later we will relax the determinism
assumption.we quantify the cost of updating after observing signal x using the

Kullback-Leibler (KL) divergence:

D[q(s|x)||p(s)] = ∑
s

q(s|x) log
q(s|x)
p(s)

. (7)

According to this definition, belief updates that move the approx-
imate posterior q(s|x) farther from the prior p(s) are more costly;
when these two distributions are identical, the KL divergence achieves
its minimum value of 0. We can now define the expected cost c(π)

under policy π, which averages over signals: When inference is exact, q(s|x) =
p(s|x), the expected KL cost is equal
to the mutual information between the
hidden state and the signal: c(π) =

∑x p(x)∑s p(s|x) log p(s|x)
p(s) . Thus, an

ideal agent will pay a cost equal on
average to the amount of information
about the hidden state conveyed by the
signal.

c(π) = ∑
x

p(x)D[q(s|x)||p(s)]. (8)

Turning now to the utility part of the optimization problem, if we’re
only concerned with the correctness beliefs (rather than external
reward), then the utility should be higher when our beliefs are closer
to the posterior. We can formalize this by stipulating that rewards are
signals (r = x) and that the utility derived from these signals is the
negative KL divergence between the approximate and true posterior:

u(r) = −D[q(s|x)||p(s|x)]. (9)

In Chapter 1, we defined resource rationality in terms of a bounded
optimization problem:

π∗ = argmax
π: c(π)≤C

ū(π), (10)

where C is a capacity limit and

ū(π) = E[u(r)|π] = −∑
x

p(x)D[q(s|x)||p(s|x)] (11)

is the expected utility. We can equivalently formulate this as an un-
bounded optimization using the method of Lagrange multipliers:

π∗ = argmax
π

ū(π)− λc(π), (12)

where the Lagrange multiplier λ ≥ 0 is given by:

λ =
∂ū(π∗)

∂c(π∗)
, (13)

with c(π∗) = C (i.e., the optimal policy operates at the capacity limit). In general, λ decreases with capacity C;
more capacity implies lower cost.The Lagrange multiplier enforces the constraint that the optimal

expected utility ū(π∗) decreases with resource consumption. Eq. 12

is useful because it shows how resource units can be converted into



chapter 4 6

commensurable utility units, with λ acting as the conversion factor. It
also motivates the linear cost function that is used in many models.

Plugging these terms into Eq. 12 and solving for π∗ yields an
approximate posterior q∗ that maximizes utility relative to the infor-
mation processing cost (Zhu et al., 2023):

q∗(s|x) ∝ p(x|s)1/(1+λ)p(s). (14)

Notice that this is just Bayes’ rule, except that the likelihood is down-
weighted. This implies under-reaction to the likelihood, as seen ex-
perimentally. In arriving at this result, we have not made any specific
algorithmic assumptions beyond requiring that the approximate
inference algorithm (whatever it might be) must obey an information-
theoretic capacity limit. Despite such weak assumptions, the result
shows that we can make a broad and rigorous assertion about the
behavioral consequences of resource rationality.

2.2 Neural implementation of costly inference

How might something like Eq. 14 be implemented in the brain? In
this section, we’ll start by describing some simple neural models
of optimal Bayesian inference, and then consider how they can be
modified to incorporate inference cost.

Let’s start with a simple setup in which a single neuron approx-
imates the posterior over two possible states s ∈ {A, B}. We will
make use of the integrate-and-fire model from Chapter 1 (in this case
without leak), where the dynamics of the neuron’s membrane poten-
tial µ(t) at time t are described by the following linear differential
equation: By removing leak, we are now dealing

with a perfect integrator of its synaptic
inputs: the membrane potential reports
the accumulated input current without
any loss of information. More realistic
models are “leaky” (decaying back to
the resting potential), but for present
purposes we will ignore leak (see Brun-
ton et al., 2013, for behavioral evidence
supporting perfect integration).

Cµ̇ = I(t), µ(0) = µ0, (15)

where C is the membrane capacitance, µ0 is the resting potential,
and I(t) is the input current, which we model as a linear combina-
tion of synaptic inputs (z1, . . . , zD) weighted by synaptic strengths
(w1, . . . , wD):

I(t) = ∑
d

wdzd(t). (16)

The inputs are generated by the Poisson spiking activity of presy-
naptic neurons; zd(t) = 1 if presynaptic neuron d spiked at time t (0
otherwise).

Suppose we had only a single presynaptic neuron (D = 1), firing
with rate f (A) when s = A and with rate f (B) when s = B. After
observing x spikes between time 0 and t, the log-likelihood ratio



chapter 4 7

under Poisson spiking is given by:

log
p(x|s = A)

p(x|s = B)
= x1 log

f (A)

f (B)
+ f (B)− f (A). (17)

This expression is a linear function of the spike count. If we set the
synaptic strength to be w1 = log f (A)

f (B) , the postsynaptic neuron will
accumulate weighted spike counts over time such that its membrane
potential represents the posterior log-odds:

µ(t) = log
p(s = A|x1)

p(s = B|x1)
, (18)

provided the resting potential is given by:

µ0 = log
p(s = A)

p(s = B)
+ f (B)− f (A). (19)

One problem with this model is that it requires the postsynaptic
neuron to have precise knowledge about the firing rates of the presy-
naptic neuron. If f (A) and f (B) are imprecisely estimated, this will
produce a bias in the posterior log-odds. One way to deal with this
problem, proposed by Gold and Shadlen (2001), is to posit a second
‘antineuron’ with opposite tuning, firing with rate f2(A) = f1(B)
and with rate f2(B) = f1(A)), where we now designate the tuning
function of the first neuron by f1. The synaptic strength for the an-
tineuron is the same as the strength for its paired neuron, but with
opposite sign: w2 = −w1 = log f2(A)

f2(B) . The log-likelihood ratio then
becomes:

log
p(x1, x2|s = A)

p(x1, x2|s = B)
= w1x1 + w2x2. (20)

The resting potential for the postsynaptic neuron is simplified to:

µ0 = log
p(s = A)

p(s = B)
. (21)

The virtue of this scheme is that it doesn’t require precise knowledge
of the tuning functions, as long as the estimates have the correct sign
(so that errors may affect the rate of evidence accumulation but won’t
systematically bias the posterior log-odds).

While an elegant idea, there isn’t much direct evidence for neuron-
antineuron pairs in the brain. Furthermore, the scheme doesn’t take
advantage of presynaptic populations with diverse tuning. Let’s
suppose instead, following Jazayeri and Movshon (2006), that there
is a large population of presynaptic neurons, where neuron d has
tuning function fd(s). The log-likelihood under Poisson spiking is
given by:

log p(x|s) = ∑
d

xd log fd(s)− fd(s)− log xd! (22)
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The third term doesn’t depend on s, so we can ignore it. We will
also ignore the second term under the assumption that ∑d fd(s) is a
constant. This assumption is valid when the population uniformly
covers the state space, so that the total response to a state is always
the same (as we’ll see, this uniformity assumption does not hold true
in general, for interesting computational reasons). After discarding
these terms, the log-likelihood ratio becomes:

log
p(x|s = A)

p(x|s = B)
= ∑

d
xd log

fd(A)

fd(B)
. (23)

This is quite similar to the approach of Gold and Shadlen (2001),
except that it doesn’t require neuron/antineuron pairs. Again we
have synaptic strengths equal to the log-transformed ratio between
firing rates, so that the postsynaptic membrane potential tracks the
posterior log odds. We will systematically examine the

decision-making aspects of sensory
discrimination in Chapter 7.

To make things concrete, let’s look at a canonical sensory discrimi-
nation task, where subjects (typically monkeys or humans) are asked
to decide whether a cloud of moving dots is moving in one of two
directions (Figure 4). A proportion of the dots are moving in the
same direction, while the rest are moving in random directions. This
proportion of coherently moving dots (coherence for short) allows the
experimenter to manipulate the strength of evidence available for the
decision.

60%40% Figure 4: Random dot motion stimuli.
Also known as a random dot kine-
matograms. The proportion of coher-
ently moving dots is shown above each
stimulus.

Neurophysiological studies have located the presynaptic popula-
tion in extrastriate area MT (also known as V5), where most neurons
are tuned to particular motion directions (Dubner and Zeki, 1971)
and increase their firing in proportion to coherence in their preferred
direction (Britten et al., 1992). The tuning functions of these neurons
are modeled fairly well by a cosine function defined over the space of
motion directions (s ∈ [0, 360]):

fd(s) = exp[cos(s − s∗d)/ν], (24)

where s∗d is the preferred direction for neuron d and ν is the tuning
width. One synapse downstream, neurons in parietal area LIP in-
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tegrate the spiking of MT neurons, enabling them to compute the
posterior log odds.

The motion discrimination setup can be used to test some empir-
ical predictions of the Jazayeri and Movshon (2006) model. When
subjects need to discriminate opposite directions of motion (e.g., left
vs. right), the largest log-likelihood ratios will come from neurons
tuned to the two target directions. In contrast, when subjects need
to discriminate nearby directions, the largest log-likelihood ratios
will come from neurons tuned to off-target directions. Intuitively,
this is because neurons that respond similarly to the two alternatives
will have small log-likelihood ratios—they provide little informa-
tion about the state. These predictions can be tested by predicting
choice behavior from the activity of MT neurons with different tun-
ing. Consistent with the model, neurons tuned to target directions
contribute more to choice behavior when discriminating opposite
directions (Britten et al., 1996), whereas neurons tuned to off-target
directions contribute more to choice behavior when discriminating
nearby directions (Purushothaman and Bradley, 2005).

Fig. 8. Population response from 104 LIP neurons during the direction discrimination task. The average firing rate is plotted as a function of time during the motion-viewing and 

delay periods. Solid and dashed curves are from trials in which the monkey judged direction toward and away from the RF, respectively. Error trials are not shown. Both the time 

course and magnitude of the response are affected by the strength of random-dot motion, particularly during the motion-viewing period.

DOI: (10.1152/jn.2001.86.4.1916) 

Time (s)

Figure 5: LIP neurons accumulate
evidence. Firing rate of LIP neurons
following stimulus onset in a motion
discrimination task. Solid and dashed
curves are from trials in which the
monkey judged direction toward and
away from a cell’s preferred direction,
respectively. Colors show different
levels of motion coherence. Adapted
from Shadlen and Newsome (2001).

LIP neurons ramp up over time during viewing of the random
dot motion stimulus (Figure 5). The slope of this ramp increases
with coherence, consistent with the observation that MT neuron
firing rates increase with coherence, thereby driving downstream LIP
neurons more strongly.

firing rate and choice is a hallmark of LIP neurons and was nearly
guaranteed by our sampling procedure (see Methods). In the present
context, the LIP response reveals the outcome of a decision. Far more
interesting is the evolution of the response that accompanied the
sequential presentation of the shapes. Although a final decision must
await the presence of all four shapes, the responses of this neuron were
modulated by partial evidence as the shapes appeared in sequence.

The example neuron shown in Fig. 2a responded strongly to the
onset of the choice targets that accompanied the first shape. This short
latency response is probably caused by the appearance of Tin (ref. 26),
but by the end of the first epoch the firing rate was affected by one of
the ten shapes that appeared near the fixation point. The response was
greater for shapes that provided evidence in favour of Tin (Fig. 2b).
The response curves shown in this epoch sort the 20 possible condi-
tions (10 shapes 3 2 choice target configurations) into quintiles that
rank the total logLR for the choice target in the response field. (Note
that the logLR quantifies the WOE in favour of Tin, regardless of its
colour. We use this convention throughout the article for simplicity;
but see Appendix C in Supplementary Information.) This difference
was even more striking in the second epoch. Again, we grouped the
200 possible conditions (100 possible 2-shape sequences 3 2 choice
target configurations) into 5 groups based on the total logLR for
reward at Tin. The same analysis was performed in the next two
epochs. In each epoch, the firing rates are affected by the logLR.

To quantify the effect of logLR on the neural response, we calcu-
lated the average firing rate for each trial in the epoch from 300 to

600 ms after shape onset, and plotted this value as a function of the
logLR (Fig. 2c). The slope of the line of best fit provides an index of
the response modulation by logLR and a test of statistical reliability
(null hypothesis, H0: slope 5 0). This neuron exhibited clear modu-
lation of its firing rate as a function of logLR in all epochs (P , 0.01).
The change in spike rate per ban is indicated in each panel. The
positive value implies that the neuron increased its firing rate when
the logLR favoured the target in its response field.

We observed a similar pattern of results for the sample of 64 neu-
rons (Fig. 3). The response averages reveal a graded modulation of
firing rates that correspond to the magnitude of logLR that favours
the target in their response field. When the evidence was against
the target in the response field, the population neuronal response
decreased. The population average firing rate is well described by
a linear function of logLR (Fig. 3b; P , 0.01; see equation (8) for
H0 : bn~0). The modulation indices (in units of spikes per second
per ban) are shown for each neuron from the two monkeys (Fig. 3c).
Although there is some heterogeneity across the population, the
histograms reveal that the change in firing rate per ban is remarkably
similar in all four epochs. This finding is supported by data from both
monkeys (see Supplementary Fig. 5). In each epoch, LIP registers the
appearance of a new shape by adjusting its firing rate to reflect the
updated logLR in favour of Tin (see Supplementary Movies, which
are described briefly in Supplementary Appendix D).

According to this theory, each of the ten shapes should cause a
change in LIP activity in accordance with the weight it was assigned.
We estimated these changes from the population by attempting to
isolate the response to each new shape in each of the four epochs. The
responses in the first epoch are obscured by the large visual response
accompanying the onset of the choice targets. However, in epochs
2–4, we subtracted the firing rate that the neuron achieved in the
previous epoch (see Methods). This procedure yields an estimate of
the magnitude and time course of the change in firing rate caused by
each of the ten stimuli (Fig. 4).

The shapes caused the firing rate to change with a fairly stereo-
typical time course, beginning ,150–200 ms after shape onset without
any obvious sign of decay (Fig. 4a). The change in firing rate appears to
reflect both the sign and the magnitude of the assigned weights. This is
easier to discern from Fig. 4b, which shows the average change in firing
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the recorded value and then averaging the residual perturbations for each
shape (see Methods). a, Time course of the change in firing rate caused by
each of the ten shapes. The darkest curve corresponds to the shape that has
the largest weight for Tin (semicircle shape when Tin is red; diamond shape
when Tin is green); the lightest line corresponds to the shape that has the
largest weight for Tout. b, The average change of firing rate induced by the ten
shapes is plotted as a function of the change in logLR associated with the
display of the shape in each of the epochs (Table 1). The two trump shapes
are excluded in epoch 4.
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Figure 6: Changes in the firing rate of
LIP neurons tracks the log-likelihood
ratio. Each dot shows the average
change in the firing rate of LIP neurons
following the appearance of a shape
that signals evidence about the correct
visual target. The x-axis is the log-
likelihood ratio associated with the
shape. Adapted from Yang and Shadlen
(2007).

One drawback of the random dot motion stimulus is that it is diffi-
cult to precisely quantify the information value of the stimulus at any
given time. A study by Yang and Shadlen (2007) addressed this issue,
recording LIP neurons while monkeys viewed a sequence of abstract
shapes. At the end of the sequence, the monkey needed to choose
(via an eye movement) one of two visual targets. The correct target
(yielding a water reward) was determined by the shape sequence:
each shape was associated with a particular log-likelihood ratio for
one target vs. the other, such that the total log-likelihood ratio could
be obtained by summing up the contributions of the shapes in the
sequence. Changes in the firing rate of LIP neurons were linearly
related to the log-likelihood ratio (Figure 6).

To summarize, neurophysiological data support the evidence accu-
mulation mechanism formalized in this section: input neurons report
the momentary evidence signals, which are linearly transformed by
a set of synaptic strengths (log-likelihood ratios) into a postsynaptic
membrane potential reporting the posterior log-odds. This simple
model (as we’ll see) is certainly not the whole story, but it provides
an empirically defensible starting point for thinking about how infer-
ence costs could enter the picture.

Recall from the last section that the cost coefficient λ enters through
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an exponent of the likelihood. This implies that λ enters through a
multiplier of the log-likelihood ratio. Using the Jazayeri and Movshon
(2006) model, this can be interpreted as a global modulation:

log
p(x|s = A)1/(1+λ)

p(x|s = B)1/(1+λ)
=

1
1 + λ ∑

d
xd log

fd(A)

fd(B)
. (25)

As λ increases (lower capacity C), the log-likelihood is suppressed.
This could be interpreted mechanistically in several (not mutu-
ally exclusive) ways: suppression of firing, suppression of synaptic
strengths, or suppression of the postsynaptic membrane potential.
All of these are energetically costly (Niven, 2016), consistent with the
idea that their suppression conserves energetic resources.

A study by Padamsey et al. (2022) grounds these theoretical spec-
ulations in empirical data (Figure 7). Mice were placed in a pool of
water (which they don’t like), where they searched for a submerged
platform located in front of a particular visual cue (a grating with a
particular orientation). They had to discriminate this visual cue from
another visual cue at a different location with a different frequency.
Thus, this is essentially a two-alternative sensory discrimination task
of the form that we’ve already analyzed.

Figure 7: Orientation discrimina-
tion under food restriction. (Left)
Discrimination task. (Middle) Discrim-
ination performance as a function of
the difference between target and non-
target orientations. (Right) Orientation
tuning in V1. CTR: control mice; FR:
food-restricted mice. Adapted from
Padamsey et al. (2022).

Food-restricted mice were impaired at discriminating similar fre-
quencies, consistent with the hypothesis that capacity is reduced
(and hence λ is increased) under food restriction. Recordings of The recordings from V1 during viewing

of natural scene images also revealed
that there was reduced discriminability
of responses to similar images of
natural scenes, as would be predicted
by a general increase in tuning width.

orientation-tuned neurons in primary visual cortex (V1) revealed
broadened tuning under food restriction. If we adapt the cosine func-
tion used by Jazayeri and Movshon (2006) to model direction tuning
in MT (Eq. 24), we would say that the tuning width ν increases under
food restriction. Plugging Eq. 24 into Eq. 25, we get:

log
p(x|s = A)1/(1+λ)

p(x|s = B)1/(1+λ)
=

1
ν(1 + λ) ∑

d
xd log

cos(A − s∗d)
cos(B − s∗d)

, (26)

where A and B here correspond to two different frequencies. This
equation makes clear how λ can be interpreted as scaling the tuning
width ν. The mechanism underlying this change was a reduction



chapter 4 11

in AMPA receptor conductance, which was compensated for by in-
creased input resistance and depolarization of the membrane poten-
tial. This had the effect of maintaining roughly the same firing rates
but making firing more variable. The broader orientation tuning es-
sentially reflects this higher variability (i.e., a higher probability of
randomly responding to stimuli farther away from a neuron’s pre-
ferred stimulus). These findings can be captured qualitatively by the
costly inference model (Figure 8).
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Tuning curves Figure 8: Simulations of the costly
inference model (Left) Discrimination
performance as a function of the dif-
ference between target and non-target
orientations. (Right) Orientation tuning
curves.

Summarizing the key insight from this section: the resource-
rational solution may be realized neurally through a reduction in
tuning precision.

2.3 Representational effects on inference

The previous section showed how optimally balancing inference cost
and utility led to down-weighting the likelihood. This can explain
under-reaction to data (as observed in the urn task), but it leaves un-
explained how judgments in magnitude estimation tasks can some-
times be repulsed away from the prior mean. As pointed out above,
this appears manifestly non-Bayesian, even if we allow for costly
inference. We will see, however, that the internal representation of
magnitudes can qualitatively change the predictions of the Bayesian
analysis. This will lead us to the surprising result that Bayesian infer-
ence can produce both attractive and repulsive effects under certain
representational assumptions.

We start by writing down a utility function that is appropriate for
magnitude estimation. Let a = ŝ denote a point estimate of a one- We no longer assume that ŝ is the

posterior mean; rather, the optimal
point estimate depends on the utility
function.

dimensional, continuous hidden state s. The policy π is assumed to
be a deterministic mapping from the sensory signal x to the point
estimate. We parametrize the utility as a one-dimensional function of
the error ϵ = s − ŝ: u(ϵ) = −|ϵ|κ , where κ is an integer. The optimal
policy, π∗ = argmaxπ ū(π), outputs different point estimates under
different parameter choices:
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• κ = 0: posterior mode. The posterior mode is also known
as the maximum a posteriori (MAP)
estimate.• κ = 1: posterior median.

• κ = 2: posterior mean.

The next, crucial step is to define the measurement model. We as-
sume that the state is mapped into an encoding f (s) and then cor-
rupted by Gaussian noise: We will not make strong assumptions Technically, the mathematical anal-

ysis requires that log p(s) be twice
differentiable.

about the prior p(s).

x = f (s) + ϵ, (27)

where ϵ ∼ N (0, σ2
s ).

A useful result, derived by Hahn and Wei (2024), is an approxima-
tion of the estimation bias: See also Prat-Carrabin and Woodford

(2021).

E[ŝ − s|s] ≈ b(s) =
1

J(s)
(log p(s))′ +

κ + 2
4

(
1

J(s)

)′
, (28)

where J(s) = E[(p′(x|s)/p(x|s))2|s] is the Fisher information. Under For compactness, we use p′(s) = ∂
∂s p(s),

and similarly for other functions.the measurement model of Eq. 27, this is given by:

J(s) =
f ′(s)2

σ2
s

. (29)

Intuitively, the Fisher information can interpreted as the quantity of
representational resources devoted to encoding information about
state s. When f (s) varies quickly around s (large Fisher informa- See Chapter 3 for more on the Fisher

information.tion), it means that the encoding is highly sensitive to (carries more
information about) state s.

To predict attraction vs. repulsion effects, we first need to define
these effects more precisely. In the context of magnitude estimation,
we define bias as attractive when it’s pointing in the direction of
the local prior mode (i.e., when it has the same sign as the deriva-
tive of the prior) and as repulsive when it’s pointing in the opposite
direction. Mathematically, this means the bias is attractive when
b(s)p′(s) > 0 and repulsive when b(s)p′(s) < 0. This is not the
only reasonable way to define attraction/repulsion. For example, one
could define it in reference to the prior mean or median. By adopting
the “local mode” definition, we are implicitly endorsing the posterior
mode as the relevant point estimate, with κ = 0 as the relevant utility
parametrization. We will continue with this assumption, while noting
that alternative assumptions will be considered later.

Using Eq. 28, we get:

b(s)p′(s) =
1

J(s)

[
p′(s)2

p(s)
− J′(s)p′(s)

J(s)

]
. (30)
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Since J(s) and p(s) are both non-negative, repulsion will only occur
when J′(s) and p′(s) have the same sign and their product is large
enough to outweigh the first term in the brackets.

How should we interpret J′(s)? To answer this question, we need
to understand the encoding function better. In many magnitude
estimation tasks, estimation accuracy diminishes with magnitude.
Fechner (1860) proposed that this arises from a logarithmic encoding,
f (s) = ω + ψ log s, where ω and ψ are constants. The logarithmic
encoding produces diminishing sensitivity by virtue of its concavity,
which implies f ′′(s) < 0 (i.e., the second derivative is negative). In
other words, increasing s produces smaller and smaller changes in
f (s) as s gets bigger. More generally, diminishing sensitivity can be
obtained by any concave, monotonically increasing encoding func-
tion. For example, Stevens (1961) proposed a power-law encoding Neural evidence for an encoding

function with diminishing sensitivity
will be discussed in the next section.

function, f (s) ∝ sα, which produces diminishing sensitivity when
α < 1.

For a logarithmic encoding function, the Fisher information is
given by:

J(s) =
ψ2

s2σ2
s

, (31)

which has power-law (s−2) scaling in magnitude (a point we will
return to in the next section). We can now relate J′(s) to the concavity
of the encoding function, by differentiating Eq. 31:

J′(s) =
2 f ′′(s) f ′(s)

σ2 . (32)

Thus, J′(s) linearly increases with the second derivative of the encod-
ing function, inheriting its diminishing sensitivity: J′(s) < 0.

Figure 9: Bias in spatial frequency
estimation. Adapted from Georgeson
and Ruddock (1980).

Returning to Eq. 30, the assumption that J′(s) < 0 means that re-
pulsion will occur when p′(s) < 0. This suggests that we should tend
to see repulsion effects when magnitude probability is a decreasing
function of magnitude. It turns out that many natural magnitudes
have this property. A good example is spatial frequency: the distri-
bution of spatial frequencies in natural images falls off according to a
power law (Dong and Atick, 1995): p(s) ∝ s−α with α between 1 and
2 (note that this is conceptually distinct from the power-law encoding
function discussed above). In this case, the approximate bias is given
by:

b(s) ∝ s2
[
−α

s
+

κ + 2
s

]
= s [−α + κ + 2] . (33)

For α < 2 + κ, the bias is always positive (i.e., repulsive, since the
mode is at 0).
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In accordance with the theory, repulsion effects have been ob-
served in spatial frequency estimation (Figure 9). Here the bias is
positive, pointing in the direction opposite the local mode. Two other
features of the data are notable. First, when stimuli are low contrast,
the bias increases with spatial frequency. This is consistent with the
fact that J(s) decreases with magnitude under a logarithmic encod-
ing, amplifying all bias effects (both attraction and repulsion). Sec-
ond, when stimuli are high contrast, bias flattens out as a function of
magnitude and approaches 0. This is consistent with the fact that J(s)
decreases with sensory noise, thereby suppressing all bias effects.

2.4 Neural encoding of magnitude

Treating the output of the encoding function as a scalar is a useful ab-
straction for deriving behavioral predictions, but it’s unrealistic as a
hypothesis about the brain. Behavioral judgments of subjective mag-
nitude are computed on the basis of neural population activity, not
single neurons. Thus, f (s) should properly be thought of as vector-
valued. As before, we will use fd(s) denote the tuning function for
neuron d, with spike count xd ∼ Poisson( fd(s)). Our first goal is to
understand how diminishing sensitivity can be realized at the neural
level. We will do this by analyzing the derivative of the Fisher infor-
mation, since the analysis in the previous section showed how this is
the critical factor in generating behavioral predictions.

For independent Poisson neurons, the mean and variance are
identical. Thus the Fisher information is given by: Things get more complicated when the

noise is correlated, a more plausible as-
sumption in networks of interconnected
neurons (Abbott and Dayan, 1999). We
will ignore this for present purposes.

J(s) = ∑
d

f ′d(s)
2

fd(s)
. (34)

Note that the Fisher information (under the uncorrelated noise as-
sumption) decomposes into the sum of neuron-specific terms.

Next, we need to make some assumptions about tuning functions.
A common finding is that magnitudes are represented in the brain
by neurons with radial tuning functions. A simple parametrization of
such functions is the squared exponential (or Gaussian):

fd(s) = exp

[
−
(s − s∗d)

2

2ν2
d

]
, (35)

where s∗d is the preferred stimulus of neuron d (the peak of its tuning
function) and ν2

d is its tuning width. One way to get diminishing
sensitivity (J′(s) < 0) is to concentrate the tuning functions around
lower magnitudes, so that s > s∗d for most magnitudes. Another way
is to increase tuning width with magnitude, which can be achieved
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by defining the tuning function on a logarithmic scale:

fd(s) = exp

[
−
(log s − log s∗d)

2

2νd

]
. (36)

Is this a good description of magnitude encoding by real neurons?
Let’s return to the case of spatial frequency, which has been exten-
sively studied. Figure 10 shows tuning functions of neurons recorded
from the primary visual cortex of cats. To a first approximation, the
average firing rates are well-described by Gaussians on the log scale.
This kind of tuning is not unique to spatial frequency; for example,
Gaussian tuning on the log scale has also been found for numerosity-
tuned neurons in monkey prefrontal and parietal cortex (Nieder and
Miller, 2003), and for temporally-tuned neurons in rodent hippocam-
pus (Cao et al., 2022). Importantly, magnitude estimation in all of
these domains exhibits diminishing sensitivity.

Population representation – orientation and spatial frequency

Figure 10: Spatial frequency tuning in
cat primary visual cortex. Unpublished
data courtesy of Tony Movshon.

The slope of the log-Gaussian tuning function is given by:

f ′(s) = − f (s)
sνd

log
s
s∗d

, (37)

which shows that the tuning width is scaled linearly by s. The Fisher
information becomes:

J(s) =
1
s2 ∑

d
fd(s)

(
1
ν2

d
log

s
s∗d

)2

. (38)

We can gain further insight into this expression by taking the limit
of infinite population size, assuming a uniform density of preferred
stimuli in log space and a constant tuning width, ν2. The sum can
then be approximated by an integral:

J(s) =
1

s2ν4

∫ ∞

−∞
exp

[
− (log s − s∗)2

2ν2

]
(log s − s∗)2ds∗. (39)

Using a standard result for Gaussian integrals of quadratic functions,
the integral yields the following scaling law for the Fisher informa-
tion:

J(s) ∝
1
s2 . (40)

We will refer to neural populations obeying this law as power-law
codes. The key takeaway from this analysis is that power-law neural
codes show the same s−2 scaling as the logarithmic (Fechnerian)
encoding function described above. In other words, we have derived
an equivalence relation between a psychophysical representation
(the logarithmic encoding function) and a neural representation (log-
Gaussian tuning). The Fisher information allows us to bridge these
levels of analysis in a unified way.
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2.5 Bayesian decoding
See Pouget et al. (2013) for a survey
of Bayesian encoding and decoding in
neural populations.

Now that we understand some of the ways that neural populations
encode magnitudes, we can ask how a downstream “readout” popu-
lation could decode these magnitudes. Let’s return to Eq. 22, which
says that the log-likelihood is a linear function of the presynaptic
spike counts x = (x1, . . . , xD), implicitly accumulated over some time
window up to time t. If we have a set of neurons selective for differ-
ent magnitudes {s̃j}, they can compute the log-likelihoods using the
perfect integrator model in Eq. 15, with input current Ij(t), weights
wjd, and resting potential µ0

j given by:

Ij(t) = ∑
d

wjdzd(t), (41)

wjd = log fd(s̃j) (42)

µ0
j = −∑

d
fd(s̃j). (43)

As before, zd(t) = 1 if presynaptic neuron d spiked at time t (0 oth-
erwise). Under these dynamics, the membrane potential µs(t) reports
the log likelihood of s up to a constant. The maximum likelihood
estimate then corresponds to the most active neuron’s designated
magnitude.

What about the prior? One approach is to encode it in the resting
potential:

µ0
j = log p(s̃j)− ∑

d
fd(s̃j). (44)

Under this assumption, the posterior mode (MAP estimate) corre-
sponds to the most active neuron’s designated magnitude. We can
also compute the full posterior distribution using softmax normaliza-
tion:

p(s = s̃j|x) =
exp[µj(t)]

∑j′ exp[µj′(t)]
, (45)

which can be implemented by assuming that the firing rate of each
postsynaptic neuron is an exponential function of its membrane
potential, divisively normalized by the activation of the entire postsy-
naptic population.

This model predicts that the firing rate of readout neurons should
increase monotonically with the posterior probability of their des-
ignated magnitude. A study of monkey superior colliculus neurons
provides an illustrative example. The superior colliculus (in particu-
lar its intermediate layers) is a subcortical structure that is involved in
the programming of eye movements based on input from cortex, and
thus is a plausible readout area. Cells in this area represent a map
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of possible target locations for eye movement. “Buildup” neurons in
this area increase their activity gradually prior to movement onset
(Munoz and Wurtz, 1995). Basso and Wurtz (1997) manipulated vi-
sual target uncertainty by presenting different numbers of possible
visual targets. After a delay, one of these targets was selected and
the monkey was trained to move its eye to that target. When more
targets were present, the activity of buildup neurons was reduced;
firing abruptly increased when the target was revealed. In a second
study, the number of previewed targets was held fixed, and uncer-
tainty was manipulated by comparing a condition where the same
target was always selected with a condition where different targets
were randomly selected on each trial. Again, higher uncertainty re- The superior colliculus is not the

only candidate readout area in the
brain. For example, activity in the
orbitofrontal cortex correlates with
decision confidence (Masset et al.,
2020), and activity in several prefrontal
areas correlates with confidence in
perceptual judgments (Geurts et al.,
2022).

duced the firing rate of target-selective neurons. Later work showed
that this reduction of firing is correlated with reductions in behav-
ioral performance on a trial-by-trial basis (Kim and Basso, 2008). In
summary, these studies are consistent with the hypothesis that the
superior colliculus functions as a probabilistic readout area sensitive
to uncertainty in cortical populations.

2.6 Weber’s law

So far we have been discussing magnitude estimation tasks, but
another important class of tasks is magnitude discrimination. A The discrimination threshold is also

known as the just noticeable difference.classic result from this class of tasks is Weber’s law (Weber, 1834):
the discrimination threshold (the magnitude difference needed to
produce a criterion level of average discrimination accuracy) is linear
in the reference magnitude (typically the lower or average magnitude
of the two stimuli). An example of this phenomenon is shown in
Figure 11. In this section, we show how the power-law neural code
gives rise to Weber’s law.

Figure 11: Weber’s law in spatial fre-
quency discrimination. Discrimination
threshold (stimulus difference yielding
85% accuracy) as a function of the lower
spatial frequency. Black line shows the
least-squares regression fit. Adapted
from Campbell et al. (1970).

An observer is asked to judge whether s1 > s2. Given the sen-
sory evidence, the observer forms point estimates ŝ1 and ŝ2. If the
evidence is sufficiently strong, the point estimates will be approxi-
mately Gaussian-distributed (due to sensory noise, for example from
stochastic spiking):

ŝi ∼ N (si, 1/J(si)). (46)

We assume that the observer selects stimulus 1 whenever ŝ1 > ŝ2. By
marginalizing over the estimation noise, we obtain the accuracy rate
(assuming s1 > s2):

p(s1 > s2) = Φ

(
∆√

1/J(s1) + 1/J(s2)

)
, (47)

where Φ(·) is the standard Gaussian CDF and ∆ = s1 − s2. Let
D denote the criterion accuracy rate. We can then solve for ∆ (the
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discrimination threshold):

∆ = Φ−1(D)
√

1/J(s1) + 1/J(s2). (48)

Assuming that ∆ is close to 0 and therefore 1/J(s1) + 1/J(s2) ≈
1/J(s) with s = (s1 + s2)/2, the discrimination threshold is given by:

∆ ≈ Φ−1(D)
√

1/J(s). (49)

Finally, we apply the power-law code (Eq. 40), yielding:

∆ ∝ s. (50)

We thus obtain Weber’s law: the discrimination threshold increases Seriès et al. (2009) derive a closely
related result using the Cramér-Rao
bound, which states that the vari-
ance of any unbiased estimator is
lower-bounded by the inverse Fisher
information.

linearly with magnitude. Once again, the Fisher information pro-
vides a bridge between neural representation and psychophysical
performance.

3 Conclusion

In this chapter, we started with the normative ideal of Bayesian infer-
ence, and then tried to explain both the successes and failures of this
ideal as a model of inference in the brain. The key idea is that com-
putational and representational constraints shape inference in ways
that comport with empirical observations. We also saw how these
constraints can be realized in simple neural networks.

Despite the elegance of these solutions, their scope is quite limited.
Realistic states are high-dimensional, with complex interdependen-
cies. To deal with these more realistic scenarios, we need to think
about how to implement approximate algorithms in neural networks.
This is the subject of the next chapter.

Study questions

1. What other cost functions besides Kullback-Leibler divergence
might be plausible? What the advantages and disadvantages of
different cost functions?

2. How would you modify the random dot motion discrimination task
to directly test predictions of the resource-rational inference model?

3. In what ways might resource-rational inference vary systematically
across individuals (e.g., children, older adults, clinical populations)?
How would you test this empirically?
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