
Computational Foundations of Cognitive Neuroscience

Chapter 2: Neural primitives of thought

This chapter introduces some simple mathematical models of neu-
rons. Starting with the dynamics of the membrane potential, we derive
more abstract models of neural activity and assess their computational
power. These models serve as the primitives from which we will con-
struct neural implementations of cognitive algorithms.

The description of neurophysiology in Chapter 1 was a cartoon—
but a useful cartoon. What makes it useful? Assembling cognitive
algorithms from neural primitives requires us to abstract away from
many details. We now consider a simple formalization that captures
key aspects of this abstraction. We then develop progressively more
abstract models which will be useful for some cognitive applications
that we consider later in the book.

1 A simple model: the leaky integrate-and-fire neuron
In the limit R → ∞ (no leak), the LIF
neuron becomes a perfect integrator
until the threshold is reached. We will
examine this case further in the next
chapter.

The leaky integrate-and-fire (LIF) model formalizes the postsynaptic
membrane as a resistor-capacitor circuit that can be charged up by
input current (with some leak) and then discharged when a spike
occurs. The membrane potential µ(t) obeys the following dynamics:

Cµ̇ =
µ0 − µ(t)

R
+ I(t), (1)

where I(t) is the input current at time t, µ(t) is the membrane po-
tential, µ̇ is its temporal derivative, µ0 is the resting potential (the
membrane potential when input current is 0), R is the membrane
resistance (determined by the number of open ion channels), and
C is the membrane capacitance (determined by the surface area of
the membrane). When µ(t) crosses a threshold θ, a spike is emitted
and the membrane potential is reset to µreset < µ0, contributing to
a brief refractory period during which spiking is suppressed. These
dynamics are illustrated in Figure 1.

Figure 1: Leaky integrate-and-fire neu-
ron with step input. (Top) Membrane
potential shown in black, firing thresh-
old in green, spikes in red. (Bottom)
Input current. The parameters were
chosen to be physiologically plausible:
C = 1, R = 10, θ = −55, µreset =
−80, µ0 = −70, I(t) = 2.

Synaptic integration can be incorporated into the LIF model by
making the input current a function of presynaptic spikes. A com-
mon assumption is that this function is linear:

I(t) = ∑
d

wdzd(t), (2)

where zd(t) ∈ {0, 1} is the spike train of presynaptic neuron d (i.e.,
zd(t) = 1 when neuron d spikes at time t), and wd is its synaptic
strength. Linear integration isn’t the whole story, but it’s a reasonably

chapter 2 2

good approximation, particularly for dendrites near the soma (Branco
and Häusser, 2011) and inputs impinging on the small protrusions
known as dendritic spines (Araya et al., 2006). For data showing linear integration, see

Cash and Yuste (1998, 1999). Studies
have also found both sublinear and
supralinear integration (reviewed in
Grienberger et al., 2015).

We can think about the LIF model as a simple signal processing
unit. To make this explicit, we rewrite the membrane potential as a
linear filter:

µ(t) = µ0 +
∫ t

0
Kout(t′)z(t − t′)dt′ +

∫ t

0
Kin(t′)I(t − t′)dt′, (3)

where z(t) denotes the postsynaptic spike train. The input kernel For a more detailed treatment of the
LIF neuron and related models, see
Gerstner et al. (2014).

Kin(t) = 1
C exp

(
− t

τ

)
specifies the dependence of the membrane

potential on the history of input currents, where τ = RC is the
membrane time constant. The output kernel Kout(t) = (µreset −
θ) exp

(
− t

τ

)
specifies the dependence of the membrane potential on

the history of spikes: a downward jump after each spike. In some
cases, we will focus on the “subthreshold regime” where the input
current is small relative to the threshold. This will license us to ne-
glect the output kernel and just focus on the linear dynamics of the
membrane potential.

To illustrate, let’s consider a constant input current Iconst. If we
ignore the threshold, the membrane potential at time t is given by a
convex combination of the resting potential µ0 and the asymptotic
potential µ∞ = µ0 + RIconst (reached in the limit t → ∞):

µ(t) = µ0 exp
(
− t

τ

)
+ µ∞

[
1 − exp

(
− t

τ

)]
. (4)

When a constant input current yields an asymptotic membrane po-
tential below the spiking threshold (µ∞ < θ), we will designate it
a subthreshold input. When we talk about the subthreshold regime,
we’re mainly talking about the case of subthreshold inputs.

This simple LIF model ignores several aspects of real neurons.
First, spiking in real neurons drives the membrane potential to
around 40 mV before declining to the reset potential; this rise and
fall after the threshold is crossed takes about 2 ms. The LIF model
assumes that the membrane potential is instantaneously reset after
the threshold is crossed. Second, some real neurons exhibit longer-
timescale dynamics such as adaptation, where the interval between
spikes becomes progressively longer. The LIF model is “memory-
less” in the sense that it does not keep around any information about
spike history beyond the current state of the membrane potential,
and therefore cannot capture adaptation. Third, some real neurons
fire sequences of spikes after the threshold is crossed, either periodi-
cally (“bursts”) or aperiodically (“stutters”). Again, the memoryless
property of the LIF model prohibits it from capturing these sequen-
tial phenomena. It is possible to generalize Eq. 3 to capture many of

chapter 2 3

these phenomena, though we will not explore such generalizations
here (see Gerstner et al., 2014).

2 Noise

The LIF model is deterministic. This will produce highly regular
spiking activity in response to a constant input. Indeed, a high de- A slice preparation immerses brain

slices in artificial cerebrospinal fluid,
where they can be recorded or stimu-
lated.

gree of regularity is observed when cells are recorded in a slice
preparation, where the inputs can be precisely controlled (Mainen
and Sejnowski, 1995). In contrast, neurons spike in a highly irregular
manner when recorded in vivo (i.e., by inserting electrodes into the
intact brain), following either current injection or the presentation of
a stimulus (Figure 2). Holt et al. (1996) argue that irregularity arises
from “random” synaptic background activity from other inputs,
which is present in vivo but absent in the slice preparation. Note that
this is random (i.e., unpredictable) only from the point of view of
the experimenter who is not able to measure all of the inputs. Re- Other sources of randomness are

thermal noise and fluctuations in the
number of open vs. closed ion channels.

gardless of how we characterize the origin of randomness, the end
result is that spiking is effectively random when we are recording
from neurons in the intact brain; we need a model that captures this
randomness.

Figure 2: Voltage traces of neurons
recorded in visual cortex. Reproduced
from Holt et al. (1996).

We can transform the LIF model into a stochastic differential equa-
tion by adding membrane potential noise ϵ(t), as illustrated in Figure
3:

Cµ̇ =
µ0 − µ(t)

R
+ I(t) + ϵ(t). (5)

If the noise reflects the summation of many independent excitatory Zero-mean, uncorrelated Gaussian
noise is known as white noise.and inhibitory currents that approximately balance each other out,

then the Central Limit Theorem implies that the noise should be ap-
proximately Gaussian-distributed: ϵ(t) ∼ N (0, σ2). The standard de-
viation σ determines the typical amplitude of the noise. The expected
membrane potential µ̄(t) = E[µ(t)] in the subthreshold regime is

chapter 2 4

identical to the membrane potential of the noiseless LIF. The variance
of the membrane potential quickly approaches a steady-state value
proportional to σ2 after a reset.

Figure 3: Leaky integrate-and-fire
neuron with step input and membrane
potential noise. Same simulation
setup as in Figure 1, with the addition
of Gaussian noise to the membrane
potential dynamics (σ = 1).

The assumption of a noisy membrane potential is important for
explaining the irregular nature of spiking. When presented with a
constant subthreshold input current, neurons tend to spike irregu-
larly. However, if an additional white noise component is superim-
posed on the constant current, spiking is highly regular when the
same noise is presented repeatedly (Mainen and Sejnowski, 1995).
To understand this in terms of the stochastic LIF model, we first note
that when the membrane time constant is short, small membrane po-
tential fluctuations will have relatively little effect on spiking because
they decay quickly—the integration time window is short. Spiking
occurs (precisely and reliably) when relatively large fluctuations tran-
siently drive the potential above the threshold. The source of these
large fluctuations is the coincidence of synaptic inputs (i.e., multi-
ple presynaptic neurons spiking synchronously). In this sense, the
postsynaptic neuron acts a coincidence detector in the subthreshold
regime (König et al., 1996).

3 The linear-nonlinear Poisson model

The LIF model is a useful mechanistic abstraction, but it can also
be challenging to work with analytically in some settings. In this
section, we derive a statistical abstraction which captures important
aspects of real neurons despite sacrificing the mechanistic description
of spiking generation. Following Plesser and Gerstner (2000), the
first step is to transform the model into a temporal point process, a
collection of random variables (spikes in this case) with probabilities
specified as a function of time. We will then use the point process to
express a static model over an integration window. See Gerstner et al. (2014) for more

details and extensions.If we ignore the boundary condition imposed by the spiking
threshold and use the steady-state value of the membrane poten-
tial variance, the probability of crossing the threshold in the window
[t, t + ∆] is given by:

p(µ(t′) = θ|t′ ∈ [t, t + ∆]) ∝ ∆ exp
(
− [µ̄(t)− θ]2

σ2

)
. (6)

Dividing both sides by ∆ yields the approximate intensity function: This follows from first-passage approxi-
mations to the stochastic LIF model.

ρ(t) ∝ exp
(
− [µ̄(t)− θ]2

σ2

)
, (7)

which specifies the expected firing rate at time t. The Poisson distribution for count
variable x is p(x) = ρxe−ρ

x! , where ρ ≥ 0
is the intensity.

The final step is to define a point process parametrized by the
intensity function. If we assume that the number of spikes within any

chapter 2 5

interval [t, t + ∆] is Poisson-distributed with rate
∫ t+∆

t ρ(t′)dt′, and
that the number of spikes is independent across disjoint intervals,
then we arrive at the inhomogeneous Poisson process with intensity
function ρ(t). Because the intensity function is a composition of
linear synaptic integration with a static nonlinearity, the complete
model is known as the linear-nonlinear Poisson model.

Poisson spiking is widely used in many models that we will dis-
cuss throughout this book. It exhibits two distinctive properties that
are similar to real neurons:

• The ratio between the variance and the mean of the spike count
(also known as the Fano factor) is close to 1 (Tolhurst et al., 1983),
although this relationship tends to break down for high spike
counts (Figure 4, left).

• The interspike interval is approximately exponentially distributed
(Figure 4, right). Note, however, that the refractory period follow-
ing spikes implies that the very short interspike intervals are not
possible; because it is peaked at 0, the exponential distribution
always overestimates the frequencies of these short intervals.

Figure 4: Spiking statistics in area MT.
Left: Variance of the spike count plotted
as a function of the mean spike count.
The dashed line shows the relationship
expected for spikes generated from a
Poisson process. Right: Histogram of
interspike intervals. The curve shows
the best-fitting exponential distribution.
Adapted from Shadlen and Newsome
(1998).

It has been argued (controversially) that spike timing is too irreg-
ular to propagate reliable information (Shadlen and Newsome, 1998;
London et al., 2010). If this is true, neurons should only care about
the firing rates of their inputs (not individual spike times), calculated
over some appropriately long integration window. This motivates the
adoption of a “static” abstraction, where we plug in the steady-state
value of the membrane potential, assuming constant input over the
integration window:

ρ(∞) ∝ exp
(
− [µ∞ − θ]2

σ2

)
. (8)

We will sometimes use the static abstraction to think about neural
representations that are relatively stable across short windows of
time. Nevertheless, we must keep in mind that these representations
are always constructed dynamically.

The results presented so far rely on particular assumptions about
membrane potential noise, as well as some approximations. Model-

chapter 2 6

ing applications often make other assumptions about the form of the
intensity function. For example, we can generalize Eq. 7:

ρ(t) = b1 exp

(
− [µ̄(t)− θ]b2

σ2

)
, (9)

where b1 and b2 are free parameters. A choice which fits data well
is b1 = 1/τ and b2 = 1 (Jolivet et al., 2006). This model is “phe-
nomenological” in the sense that it is not derived from underlying
mechanisms, but it can still serve as an accurate description of spik-
ing data.

4 Spikes vs. rates
See Brette (2015) for a more compre-
hensive discussion of the issues in this
section.

In motivating the static abstraction, we referred to the purported
irregularity of spike timing. We now unpack and scrutinize this ar-
gument. When an electrophysiologist records from a single neuron
over multiple repetitions of a stimulus, a typical observation is that
the precise spike times are highly variable across repetitions (Figure
5, top). By temporally binning the spikes and averaging over repeti-
tions, we obtain the peri-stimulus time histogram (PSTH). The example
shown in Figure 5 (bottom) reveals well-behaved average response dy-
namics despite apparently low reproducibility of spike timing across
repetitions. A downstream neuron could easily decode the stimulus
orientation from the PSTH even if it had no access to the underlying
spikes.

Of course, neurons never have access to the actual PSTH on a
single trial, unless we assume that the tuning of its inputs are homo-
geneous (i.e., they all have the same tuning functions—a questionable
assumption), so that averaging across multiple trials for a single neu-
ron and averaging across multiple neurons for a single trial would
be equivalent. When we say that the neural code is rate-based, what
we really mean is that neurons are integrating information across
time in a such a way that information about precise spike timing is
discarded—only the presynaptic firing rates matter for determining
the postsynaptic response.

the identity of the stimulus is determined by the cell or group of cells
that fired the first n spikes with respect to the reference signal. This
may come at the expense of the time it takes to make a decision.
However, if the number of spikes, n, is less than or equal to the group
size, N, then the mean decision time of the n-tWTA will be less than
the mean first spike time of a single cell, keeping the mechanism fast.

Discrimination accuracy based on single cell responses
As a first test of the tWTA accuracy we quantified how well it

can discriminate between two orientations based on single cell
responses. We consider the case where one of the orientations is
the cell’s preferred orientation h0 (as defined by its latency tuning
curve) and the other orientation is h0+Dh. The tWTA decision rule

Figure 2. Additional examples of spike latency tuning. Each column, (A)–(C), corresponds to data from a different unit. First row: Raster plot
for each of the 8 orientations. For each orientation, 100 randomly chosen trials are shown for 120 ms after stimulus onset. Second row: PSTH (Post
Stimulus Time Histogram) for the same time window. Third row: Tuning curve of first spike latency. Cosine fit is shown as a solid line. Fourth row: Rate
tuning curve (black circles) and a fitted von-Mises function (solid line). The cell in (A) is taken from dataset 1 in Table 1, in which stimulus duration was
400 ms and the number of trials was 400. The cells in (B) and (C) are taken from dataset 5 in Table 1, in which stimulus duration was 300 ms and the
number of trials was 300. These are the same 3 cells as in Figure 5.
doi:10.1371/journal.pcbi.1002536.g002

Fast Coding of Orientation in V1

PLoS Computational Biology | www.ploscompbiol.org 5 June 2012 | Volume 8 | Issue 6 | e1002536

the identity of the stimulus is determined by the cell or group of cells
that fired the first n spikes with respect to the reference signal. This
may come at the expense of the time it takes to make a decision.
However, if the number of spikes, n, is less than or equal to the group
size, N, then the mean decision time of the n-tWTA will be less than
the mean first spike time of a single cell, keeping the mechanism fast.

Discrimination accuracy based on single cell responses
As a first test of the tWTA accuracy we quantified how well it

can discriminate between two orientations based on single cell
responses. We consider the case where one of the orientations is
the cell’s preferred orientation h0 (as defined by its latency tuning
curve) and the other orientation is h0+Dh. The tWTA decision rule

Figure 2. Additional examples of spike latency tuning. Each column, (A)–(C), corresponds to data from a different unit. First row: Raster plot
for each of the 8 orientations. For each orientation, 100 randomly chosen trials are shown for 120 ms after stimulus onset. Second row: PSTH (Post
Stimulus Time Histogram) for the same time window. Third row: Tuning curve of first spike latency. Cosine fit is shown as a solid line. Fourth row: Rate
tuning curve (black circles) and a fitted von-Mises function (solid line). The cell in (A) is taken from dataset 1 in Table 1, in which stimulus duration was
400 ms and the number of trials was 400. The cells in (B) and (C) are taken from dataset 5 in Table 1, in which stimulus duration was 300 ms and the
number of trials was 300. These are the same 3 cells as in Figure 5.
doi:10.1371/journal.pcbi.1002536.g002

Fast Coding of Orientation in V1

PLoS Computational Biology | www.ploscompbiol.org 5 June 2012 | Volume 8 | Issue 6 | e1002536

the identity of the stimulus is determined by the cell or group of cells
that fired the first n spikes with respect to the reference signal. This
may come at the expense of the time it takes to make a decision.
However, if the number of spikes, n, is less than or equal to the group
size, N, then the mean decision time of the n-tWTA will be less than
the mean first spike time of a single cell, keeping the mechanism fast.

Discrimination accuracy based on single cell responses
As a first test of the tWTA accuracy we quantified how well it

can discriminate between two orientations based on single cell
responses. We consider the case where one of the orientations is
the cell’s preferred orientation h0 (as defined by its latency tuning
curve) and the other orientation is h0+Dh. The tWTA decision rule

Figure 2. Additional examples of spike latency tuning. Each column, (A)–(C), corresponds to data from a different unit. First row: Raster plot
for each of the 8 orientations. For each orientation, 100 randomly chosen trials are shown for 120 ms after stimulus onset. Second row: PSTH (Post
Stimulus Time Histogram) for the same time window. Third row: Tuning curve of first spike latency. Cosine fit is shown as a solid line. Fourth row: Rate
tuning curve (black circles) and a fitted von-Mises function (solid line). The cell in (A) is taken from dataset 1 in Table 1, in which stimulus duration was
400 ms and the number of trials was 400. The cells in (B) and (C) are taken from dataset 5 in Table 1, in which stimulus duration was 300 ms and the
number of trials was 300. These are the same 3 cells as in Figure 5.
doi:10.1371/journal.pcbi.1002536.g002

Fast Coding of Orientation in V1

PLoS Computational Biology | www.ploscompbiol.org 5 June 2012 | Volume 8 | Issue 6 | e1002536

Figure 5: Neural responses in pri-
mary visual cortex. (Top) Raster plot of
spikes for a single neuron in response
to repetitions of drifting sinusoidal
gratings with different orientations.
Each black point is a single spike. (Bot-
tom) The peri-stimulus time histogram
obtained by binning and averaging
the spikes across repetitions. Each line
corresponds to a different stimulus
orientation. Reproduced from Shriki
et al. (2012).

There is evidence that precise spike timing is not discarded. First,
spike timing can be highly reproducible under certain conditions
(e.g., with time-varying input patterns; Mainen and Sejnowski, 1995;
de Ruyter van Steveninck et al., 1997)—a necessary precondition for
using spike timing to communicate information reliably. Second, dis-
carding spike timing information from retinal output cells reduces
the performance of an optimal stimulus decoder to levels well below
animal behavioral performance, whereas a model that incorporates
spike timing is able to match animal performance (Jacobs et al., 2009).

chapter 2 7

Similar exercises in somatosensory cortex also demonstrated that
spike timing information improves the match to behavioral perfor-
mance (Mackevicius et al., 2012; Zuo et al., 2015).

Because this is the first time we’re talking about decoders, we’ll
unpack this point further. A stimulus decoder is a distribution p(s|x),
where s is the stimulus and x is some measure of neural activity. In
this book, we will talk about decoders in two ways. One is as an anal-
ysis tool in the hands of neuroscientists. Showing that we can decode
stimulus information from neural activity means that the information
must be represented by those neurons (though its computational role
may be unclear). The second way, dealt with in later chapters, is as
a model of neural computation: some downstream neurons can be
conceptualized as decoding information from upstream neurons. An
optimal decoder uses Bayes’ rule to obtain p(s|x).

If a neuroscientist’s decoder matches behavioral performance, it
means that it is doing approximately as well as the brain’s decoder.
This provides us with a recipe for reverse engineering what infor-
mation is being used by the brain’s decoder. The examples given
above show that using spike timing yields a better match to behavior
than firing rate, suggesting that spike timing is used by the brain’s
decoder.

On the other hand, there is relatively sparse evidence that precise
spike timing is important for predicting detailed behavioral events.
In contrast, there is abundant evidence that firing rates can predict
behavioral events on single trials. For example, the firing rates of See Chapters 4 and 7 for more details

about motion discrimination in the
brain.

single neurons in the motion processing area MT predict a monkey’s
decisions in a motion discrimination task (Britten et al., 1996). Even
response times can be predicted based on firing rates (e.g., Cook and
Maunsell, 2002; Roitman and Shadlen, 2002), indicating that they
convey enough temporal information to identify behavioral events at
the relevant timescale. This doesn’t mean that spike timing is never
behaviorally relevant, only that we have more evidence from firing
rate data. Conspicuously, the best data for the behavioral relevance Another place where spike timing

seems to matter for behavior is at the
motor periphery (Srivastava et al.,
2017).

of spike timing comes from early sensory processing, before timing
information has been erased over multiple synaptic transmissions. By
the time signals reach higher-level cortex, firing rate may be the only
reliable source of information.

Models like the LIF neuron can operate as integrators (when the
membrane time constant is long) and as coincidence detectors (when
the membrane time constant is short), as illustrated in Figure 6. The
integration mode effectively discards spike timing information,
whereas the coincidence detection mode relies on precisely-timed
presynaptic spikes in order to produce a postsynaptic spike. A short
membrane time constant means that multiple presynaptic spikes

chapter 2 8

need to arrive near-simultaneously in order to push the membrane
potential above the firing threshold.

Figure 6: Leaky integrate-and-fire neu-
ron with pulsed inputs and different
membrane time constants. (Left) Inte-
gration mode when the time constant
is long (R = 20, C = 2). (Right) Coin-
cidence detection mode when the time
constant is short (R = 5, C = 0.5). Top
panels show the membrane potential
and spikes; bottom panels show the
input current (corresponding to discrete
spikes). The first set of spikes is spaced,
while the second set is massed. Mem-
brane potential noise is set to be small
(σ = 0.1) in these simulations.

Some of the most compelling evidence for the coincidence detec-
tion mode comes from studies of sound localization (Ashida and
Carr, 2011). Many animals localize sound direction by comparing the
time difference between auditory signals arriving at each ear. This is
implemented neurally by a set of “delay lines” (auditory nerve fibers
with a range of conduction times) which function as a map of sound
arrival time. The maps for each ear converge on neurons that are
sensitive to the coincidence of their inputs, allowing a downstream
circuit to identify the sound direction with a level of accuracy that
requires microsecond precision in the representation of time delays—
a prohibitive feat for systems that rely on neurons with slow time
constants.

Figure 7: Leaky integrate-and-fire
neuron with weak step input and
large membrane potential noise. Same
simulation setup as in Figure 1, with
the addition of Gaussian noise to the
membrane potential dynamics (σ = 2.5)
and a weak step input (I(t) = 1). When
excitation and inhibition are exactly
balanced, I(t) = 0.

When excitation and inhibition of a neuron are approximately
balanced, the membrane potential approaches a random walk, mov-
ing stochastically up or down until the threshold is reached and the
potential is reset (Figure 7). This is known as the fluctuation-driven
regime, because spiking is driven by random fluctuations in the mem-
brane potential, with highly irregular interspike intervals. A short
membrane time constant would be disastrous in this regime, because
the spikes would essentially be propagating noise rather than sig-
nal. In other words, a coincidence detector would only be detecting
spurious coincidences. Whatever signal exists will be weak, necessi-
tating long time constants to average out the noise. As pointed out by

chapter 2 9

Shadlen and Newsome (1994), this implies that a precise spike timing
code is implausible in the fluctuation-driven regime. Cortical circuits Excitation-inhibition balance emerges

naturally in sparsely connected net-
works of neurons with strong synapses
(Van Vreeswijk and Sompolinsky, 1996).

do in fact exhibit approximate balance of excitation and inhibition
(Wehr and Zador, 2003; Okun and Lampl, 2008). Thus, integration
may be a typical operational mode for cortical neurons.

In subsequent chapters we will explore both rate and spike timing
codes. It’s plausible that both kinds of codes are used by the brain in
different circumstances. Our goal will be to understand what those
circumstances are and the computational logic underlying them.

5 Tuning functions

In many neuroscience experiments, an animal is presented with a
stimulus (e.g., an image, sound, etc.) while the firing rates of neurons
are measured. This allows the experimenter to plot the average firing
rate as a function of some stimulus parameter—a tuning function (or
receptive field). When the stimulus parameter is one-dimensional, this
is called a tuning curve. For example, some neurons in primary visual
cortex are tuned to the local orientation of edges in a specific region
of retinotopic space: their firing rates are bell-shaped functions of
orientation, with a peak at particular orientations (Fig. 8).

the identity of the stimulus is determined by the cell or group of cells
that fired the first n spikes with respect to the reference signal. This
may come at the expense of the time it takes to make a decision.
However, if the number of spikes, n, is less than or equal to the group
size, N, then the mean decision time of the n-tWTA will be less than
the mean first spike time of a single cell, keeping the mechanism fast.

Discrimination accuracy based on single cell responses
As a first test of the tWTA accuracy we quantified how well it

can discriminate between two orientations based on single cell
responses. We consider the case where one of the orientations is
the cell’s preferred orientation h0 (as defined by its latency tuning
curve) and the other orientation is h0+Dh. The tWTA decision rule

Figure 2. Additional examples of spike latency tuning. Each column, (A)–(C), corresponds to data from a different unit. First row: Raster plot
for each of the 8 orientations. For each orientation, 100 randomly chosen trials are shown for 120 ms after stimulus onset. Second row: PSTH (Post
Stimulus Time Histogram) for the same time window. Third row: Tuning curve of first spike latency. Cosine fit is shown as a solid line. Fourth row: Rate
tuning curve (black circles) and a fitted von-Mises function (solid line). The cell in (A) is taken from dataset 1 in Table 1, in which stimulus duration was
400 ms and the number of trials was 400. The cells in (B) and (C) are taken from dataset 5 in Table 1, in which stimulus duration was 300 ms and the
number of trials was 300. These are the same 3 cells as in Figure 5.
doi:10.1371/journal.pcbi.1002536.g002

Fast Coding of Orientation in V1

PLoS Computational Biology | www.ploscompbiol.org 5 June 2012 | Volume 8 | Issue 6 | e1002536

the identity of the stimulus is determined by the cell or group of cells
that fired the first n spikes with respect to the reference signal. This
may come at the expense of the time it takes to make a decision.
However, if the number of spikes, n, is less than or equal to the group
size, N, then the mean decision time of the n-tWTA will be less than
the mean first spike time of a single cell, keeping the mechanism fast.

Discrimination accuracy based on single cell responses
As a first test of the tWTA accuracy we quantified how well it

can discriminate between two orientations based on single cell
responses. We consider the case where one of the orientations is
the cell’s preferred orientation h0 (as defined by its latency tuning
curve) and the other orientation is h0+Dh. The tWTA decision rule

Figure 2. Additional examples of spike latency tuning. Each column, (A)–(C), corresponds to data from a different unit. First row: Raster plot
for each of the 8 orientations. For each orientation, 100 randomly chosen trials are shown for 120 ms after stimulus onset. Second row: PSTH (Post
Stimulus Time Histogram) for the same time window. Third row: Tuning curve of first spike latency. Cosine fit is shown as a solid line. Fourth row: Rate
tuning curve (black circles) and a fitted von-Mises function (solid line). The cell in (A) is taken from dataset 1 in Table 1, in which stimulus duration was
400 ms and the number of trials was 400. The cells in (B) and (C) are taken from dataset 5 in Table 1, in which stimulus duration was 300 ms and the
number of trials was 300. These are the same 3 cells as in Figure 5.
doi:10.1371/journal.pcbi.1002536.g002

Fast Coding of Orientation in V1

PLoS Computational Biology | www.ploscompbiol.org 5 June 2012 | Volume 8 | Issue 6 | e1002536

Figure 8: Orientation-tuned neuron in
primary visual cortex. This is the same
neuron shown in Figure 5. Reproduced
from Shriki et al. (2012).

In the parlance of Bayesian decision theory, the stimulus parameter
is a state variable (i.e., the cause of sensory input). We will therefore
use the notation fd(s) to denote the average firing rate of neuron d in
response to state s. The state is not typically available directly to the
brain, but must instead be inferred; this is the topic of Chapters 4 and
5.

The tuning curve is a useful abstraction because it tells us some-
thing about how the brain encodes state information. We must re-
member that it is not a mechanistic description of the causal events
that go from the (typically hidden) state to the firing rate of a neuron.
One of our goals will be to explain how particular tuning functions
arise, both mechanistically and in terms of general design principles.

Another thing to remember is that the tuning of single neurons
can be highly misleading about the nature of neural computation.
Populations of neurons do much of the computational work in the
brain, and the relevant information is often distributed in complex
ways across many neurons. In other words, tuning functions are
generally meaningful only in the context of the roles they play within
a population. We will see examples of this throughout the book.

chapter 2 10

6 Universality

By asserting that these simple neuron models function as neural prim-
itives of thought, we are making a promise that they can be used to
construct computational systems capable of complex cognition (in-
ference, decision making, learning, memory, attention, etc.). Beyond
actually constructing such systems, which is what we’ll do in the rest
of this book, we can ask a more general question: what is the class of
computational systems that we can construct with these neural prim-
itives? In other words, what are the limits of such systems? In the
following sub-sections, we define 3 distinct notions of universality,
which we connect to the LIF model and related models.

6.1 Logical universality

The first foray into the question of universality was undertaken by
McCulloch and Pitts (1943), who started from the idea that a spike
signals the truth value of a proposition represented by the neuron.
Their model of a neuron was very similar to the LIF model intro-
duced above, except that it operated in discrete time. At each time In essence, we can think of the

McCulloch-Pitts neuron as the limit
of an LIF neuron with τ → 0, so that it
processes its inputs instantaneously.

step, a neuron receives a binary pattern that represents the truth val-
ues for a set of input propositions (represented by the presynaptic
neurons). As in the LIF, the inputs are linearly weighted by synaptic
strengths, followed by a thresholding operation, z(t) = ϕ(I(t)− θ),
where θ is a threshold parameter and ϕ(·) is an “activation function”
(in this case a step function): Later we will consider more general

activation functions.

ϕ(x) =

1 x ≥ 0

0 x < 0.
(10)

McCulloch and Pitts understood this neuron model as implementing
a logical function. A variety of logical functions can be implemented
with different choices of thresholds and weights, as illustrated in
Figure 9.

More complex functions can be built from these simple elements.
For example, a NAND (“not and”) function can be built by compos-
ing the AND and NOT functions. This construction is significant Logical universality as defined here is

also known as functional completeness.because the NAND function is a universal element—all other Boolean
functions can be constructed out of only NAND functions (Sheffer,
1913).

6.2 Computational universality

Logical universality says that we can implement any logical function
with a set of primitives, but it does not say that we can implement

chapter 2 11

z1 z2

z3

w2 = +1w1 = +1

AND

θ = 2

z1 z2

z3

w2 = +1w1 = +1

OR

θ = 1

z1 z2 z3
1 1 1
1 0 0
0 1 0
0 0 0

z1 z2 z3
1 1 1
1 0 1
0 1 1
0 0 0

z1

z3

w1 = -1

NOT

θ = 0

z1 z3
1 0
1 0
0 1
0 1

Figure 9: Logical functions imple-
mented with McCulloch-Pits neurons.
The truth table for each function is
shown below the corresponding circuit.

any computation. To appreciate the difference, consider the follow-
ing simple problem: determine whether the first and last inputs in a
sequence are the same. If the sequence has a fixed length, we can eas-
ily construct a circuit out of McCulloch-Pitts neurons that solves the
problem. However, what happens when the sequence can be of inde-
terminate length? Here the McCulloch-Pitts neural circuit runs into
trouble. It could run out of neurons if the sequence is long enough—
a finite network cannot handle arbitrarily long sequences without
additional memory. Even if the sequences can be relatively short, not
knowing the sequence length in advance means that you would need
a separate circuit for each length (again potentially running out of
neurons).

A general solution is to equip the system with a read/write mem-
ory (Figure 10, left), which would allow it to write the first input
to memory and then compare the last input to the stored memory
(ignoring everything else in between). This functionality is beyond Gallistel and King (2011) argue that

the absence of a read/write memory is
the fundamental weakness of standard
neural network models in neuroscience.

the capabilities of simple McCulloch-Pitts circuits, and is in fact the
key ingredient to building universal computers. Turing (1936) for-
malized this idea using what is now known as the Turing machine,
a device that writes to and reads from a tape of unbounded length,
while moving along the tape (or halting) according to rules specified
by a transition table. Despite its simplicity, the Turing machine can
implement a universal computer in the following sense: there exists
a Turing machine that can compute any function which can be com-
puted in a finite number of steps based on a finite set of instructions.

A McCulloch-Pitts circuit with an unbounded read/write memory
can achieve computational universality. This is essentially a Turing The idea of equipping neural circuits

with read/write memories has been
exploited in modern machine learning
to train powerful systems (Graves et al.,
2016).

machine where the transition table is specified by the weights and
thresholds of the circuit (as well as input-dependent rules for reading
and writing at different memory locations). It remains a fascinating
and unresolved question how biology might have implemented such
a read/write memory.

chapter 2 12

z1 z2

z3

1 0 1 1 …

writeread

z1 z2

z3

External memory Recurrence Figure 10: Motifs for computationally
universal circuits. (Left) Adding an
external memory to the McCulloch-
Pitts circuit. (Right) Adding recurrent
connections.

Another approach, pioneered by Siegelmann and Sontag (1992), is
to adopt a neuron model with rational-valued outputs and weights,
and to replace the step function non-linearity with a linear function
that saturates below 0 and above 1. Recurrent circuits built out of A similar result can also be proven for

neurons with a smooth “sigmoidal-like”
(S-shaped) activation function (Kilian
and Siegelmann, 1996).

such neurons (where at each time step the previous activation is fed
back into the circuit; Figure 10, right) are also computationally uni-
versal. We will discuss recurrent networks further in later chapters.

6.3 Universal function approximation
Note that if the function approximator
is implemented on a digital computer,
then inevitably it too must be built out
of discrete components (though with
possibly arbitrarily high precision).

Logical and computational universality apply to discrete components
(inputs, outputs, and machines). In some settings, we care about ap-
proximating functions between continuous inputs and outputs using
machines made out of continuous components. Here we ask whether
it is possible to build a universal function approximator (i.e., an ap-
proximator that can get arbitrarily close to any target function within
some class, as detailed below) using simple neural components of the
sort that we’ve already seen, albeit with continuous inputs, outputs,
weights, and thresholds. This research program is often associated
with circuits of perceptrons (Rosenblatt, 1958), which are generaliza-
tions of the McCulloch-Pitts neuron model.

The typical setup (see Pinkus, 1999, for a review) is to assume that
the input to a circuit is a “compact” subset of RN (the N-dimensional
space of real numbers). Informally, compactness means that there
are no holes or excluded boundaries. As before, we’ll assume that
a neuron’s activation is given by a linear combination of its inputs
(denoted here by x) followed by a nonlinear activation function ϕ(·)
with threshold θ. For notational simplicity, we will exclude the time
index:

z(x) = ϕ(∑n wnxn − θ). (11)

In a perceptron, ϕ(x) can be a smooth continuous function, such as a
sigmoid, ϕ(x) = 1/(1 + e−x). Now let’s consider a circuit constructed

chapter 2 13

out of such perceptrons. We want to know what class of functions
this circuit can approximate, in the sense that the maximum absolute
difference between the target function output and the circuit output
(across all possible inputs) is always less than some small constant ϵ.

A classic result (Funahashi, 1989) is that all continuous functions
from a compact subset of RN to RM can be approximated within ϵ

by a linear combination of (possibly infinitely many) perceptrons, These requirements are satisfied by
a sigmoidal activation function, for
example.

provided ϕ(x) is nonconstant, bounded, and monotonic. In other
words, a 3-layer feedforward circuit consisting of N inputs feeding
into a set of perceptrons (the “hidden” layer), which in turn feed into
M linear units, can be designed such that it gets arbitrarily close to
any continuous function, provided the weights and thresholds are
chosen appropriately (how to actually find these parameter values is
the major problem of neural network learning, discussed further in
Chapter 9). The number of required perceptrons in the hidden layer
depends on the function being approximated.

Many subsequent results have generalized this setup in various
ways. For example, instead of arbitrary width (i.e., the number of
perceptrons in the hidden layer is unbounded), one can get universal
function approximation with fixed width and arbitrary depth (adding
more layers; see Gripenberg, 2003). It turns out that depth can be
more useful than width in that the same approximation accuracy can
in certain cases be achieved with fewer neurons when depth rather
than width is increased (Lu et al., 2017).

7 Conclusion

This chapter has surveyed a set of “neural primitives” with which we
will implement computational models of cognition. These primitives
are (in principle) powerful enough to implement any logical function,
digital computation, or smooth continuous function. In subsequent
chapters, we will show how they can be used to implement the ele-
ments of Bayesian decision theory. While the neural primitives are
fairly dramatic simplifications of real neurons, we will see that they
can nonetheless capture a wide range of data.

Study questions

1. What are the computational advantages and disadvantages of using
spike times vs. firing rates?

2. Why are tuning curves informative but potentially misleading when
considered in isolation? How does population coding complicate
the interpretation of single-neuron tuning?

chapter 2 14

3. Compare the three notions of universality (logical, computational,
and function approximation). How do they differ in scope and
implications?

References

Araya, R., Eisenthal, K. B., and Yuste, R. (2006). Dendritic spines
linearize the summation of excitatory potentials. Proceedings of the
National Academy of Sciences, 103:18799–18804.

Ashida, G. and Carr, C. E. (2011). Sound localization: Jeffress and
beyond. Current Opinion in Neurobiology, 21:745–751.

Branco, T. and Häusser, M. (2011). Synaptic integration gradients in
single cortical pyramidal cell dendrites. Neuron, 69:885–892.

Brette, R. (2015). Philosophy of the spike: rate-based vs. spike-based
theories of the brain. Frontiers in Systems Neuroscience, 9:140675.

Britten, K., Newsome, W., Shadlen, M., Celebrini, S., and Movshon,
J. (1996). A relationship between behavioral choice and the visual
responses of neurons in macaque MT. Visual Neuroscience, 13:87–
100.

Cash, S. and Yuste, R. (1998). Input summation by cultured pyrami-
dal neurons is linear and position-independent. Journal of Neuro-
science, 18:10–15.

Cash, S. and Yuste, R. (1999). Linear summation of excitatory inputs
by CA1 pyramidal neurons. Neuron, 22:383–394.

Cook, E. P. and Maunsell, J. H. (2002). Dynamics of neuronal re-
sponses in macaque MT and VIP during motion detection. Nature
Neuroscience, 5:985–994.

de Ruyter van Steveninck, R. R., Lewen, G. D., Strong, S. P., Koberle,
R., and Bialek, W. (1997). Reproducibility and variability in neural
spike trains. Science, 275:1805–1808.

Funahashi, K.-I. (1989). On the approximate realization of continuous
mappings by neural networks. Neural Networks, 2:183–192.

Gallistel, C. R. and King, A. P. (2011). Memory and the Computational
Brain: Why Cognitive Science Will Transform Neuroscience. John Wiley
& Sons.

chapter 2 15

Gerstner, W., Kistler, W. M., Naud, R., and Paninski, L. (2014). Neu-
ronal Dynamics: From Single Neurons to Networks and Models of Cogni-
tion. Cambridge University Press.

Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I.,
Grabska-Barwińska, A., Colmenarejo, S. G., Grefenstette, E., Ra-
malho, T., Agapiou, J., et al. (2016). Hybrid computing using a
neural network with dynamic external memory. Nature, 538:471–
476.

Grienberger, C., Chen, X., and Konnerth, A. (2015). Dendritic function
in vivo. Trends in Neurosciences, 38:45–54.

Gripenberg, G. (2003). Approximation by neural networks with a
bounded number of nodes at each level. Journal of Approximation
Theory, 122:260–266.

Holt, G. R., Softky, W. R., Koch, C., and Douglas, R. J. (1996). Com-
parison of discharge variability in vitro and in vivo in cat visual
cortex neurons. Journal of Neurophysiology, 75:1806–1814.

Jacobs, A. L., Fridman, G., Douglas, R. M., Alam, N. M., Latham,
P. E., Prusky, G. T., and Nirenberg, S. (2009). Ruling out and ruling
in neural codes. Proceedings of the National Academy of Sciences,
106:5936–5941.

Jolivet, R., Rauch, A., Lüscher, H.-R., and Gerstner, W. (2006). Pre-
dicting spike timing of neocortical pyramidal neurons by simple
threshold models. Journal of Computational Neuroscience, pages
35–49.

Kilian, J. and Siegelmann, H. T. (1996). The dynamic universality of
sigmoidal neural networks. Information and Computation, 128:48–56.

König, P., Engel, A. K., and Singer, W. (1996). Integrator or coinci-
dence detector? the role of the cortical neuron revisited. Trends in
Neurosciences, 19:130–137.

London, M., Roth, A., Beeren, L., Häusser, M., and Latham, P. E.
(2010). Sensitivity to perturbations in vivo implies high noise and
suggests rate coding in cortex. Nature, 466:123–127.

Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L. (2017). The expressive
power of neural networks: A view from the width. Advances in
Neural Information Processing Systems, 30.

Mackevicius, E. L., Best, M. D., Saal, H. P., and Bensmaia, S. J. (2012).
Millisecond precision spike timing shapes tactile perception. Jour-
nal of Neuroscience, 32:15309–15317.

chapter 2 16

Mainen, Z. F. and Sejnowski, T. J. (1995). Reliability of spike timing in
neocortical neurons. Science, 268:1503–1506.

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas
immanent in nervous activity. The Bulletin of Mathematical Bio-
physics, 5:115–133.

Okun, M. and Lampl, I. (2008). Instantaneous correlation of excita-
tion and inhibition during ongoing and sensory-evoked activities.
Nature Neuroscience, 11:535–537.

Pinkus, A. (1999). Approximation theory of the MLP model in neural
networks. Acta Numerica, 8:143–195.

Plesser, H. E. and Gerstner, W. (2000). Noise in integrate-and-fire
neurons: from stochastic input to escape rates. Neural Computation,
12:367–384.

Roitman, J. D. and Shadlen, M. N. (2002). Response of neurons in the
lateral intraparietal area during a combined visual discrimination
reaction time task. Journal of Neuroscience, 22:9475–9489.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for infor-
mation storage and organization in the brain. Psychological Review,
65:386–408.

Shadlen, M. N. and Newsome, W. T. (1994). Noise, neural codes and
cortical organization. Current Opinion in Neurobiology, 4:569–579.

Shadlen, M. N. and Newsome, W. T. (1998). The variable discharge
of cortical neurons: implications for connectivity, computation, and
information coding. Journal of Neuroscience, 18:3870–3896.

Sheffer, H. M. (1913). A set of five independent postulates for Boolean
algebras, with application to logical constants. Transactions of the
American mathematical society, 14:481–488.

Shriki, O., Kohn, A., and Shamir, M. (2012). Fast coding of orientation
in primary visual cortex. PLoS Computational Biology, 8:e1002536.

Siegelmann, H. T. and Sontag, E. D. (1992). On the computational
power of neural nets. In Proceedings of the Fifth Annual Workshop on
Computational Learning Theory, pages 440–449.

Srivastava, K. H., Holmes, C. M., Vellema, M., Pack, A. R., Elemans,
C. P., Nemenman, I., and Sober, S. J. (2017). Motor control by
precisely timed spike patterns. Proceedings of the National Academy
of Sciences, 114:1171–1176.

chapter 2 17

Tolhurst, D. J., Movshon, J. A., and Dean, A. F. (1983). The statistical
reliability of signals in single neurons in cat and monkey visual
cortex. Vision Research, 23:775–785.

Turing, A. M. (1936). On computable numbers, with an application to
the Entscheidungsproblem. Proceedings of the London Mathematical
Society, s2–42:230–265.

Van Vreeswijk, C. and Sompolinsky, H. (1996). Chaos in neuronal
networks with balanced excitatory and inhibitory activity. Science,
274:1724–1726.

Wehr, M. and Zador, A. M. (2003). Balanced inhibition underlies
tuning and sharpens spike timing in auditory cortex. Nature,
426:442–446.

Zuo, Y., Safaai, H., Notaro, G., Mazzoni, A., Panzeri, S., and Dia-
mond, M. E. (2015). Complementary contributions of spike timing
and spike rate to perceptual decisions in rat s1 and s2 cortex. Cur-
rent Biology, 25:357–363.

	A simple model: the leaky integrate-and-fire neuron
	Noise
	The linear-nonlinear Poisson model
	Spikes vs. rates
	Tuning functions
	Universality
	Conclusion

