Computational Foundations of Cognitive Neuroscience

Chapter 14: Memory systems

Memory is computationally accessible information about the past. This
chapter argues that the brain stores different forms of memory in or-
der to provide state representations appropriate for different kinds of
tasks. In particular, the partial observability of the environment state
necessitates computations of (approximate) belief states—posterior
distributions over hidden states—which are functions of sensory his-
tory. The belief states depend on the task-specific structure of partial
observability. In some cases they require only stable short-term main-
tenance, while in others they require temporal dynamics or long-term
passive storage. This allows us to understand the logic underlying the
multiplicity of memory systems in the brain.

Most neuroscience textbooks treat “memory” as a set of dedicated
systems specialized for different kinds of memoranda (Figure 1). To
some, extent this treatment is correct: there are areas of the brain
with neurons that activate in response to storage and retrieval of par-
ticular information. Damage to these areas results in selective deficits
for that information. Damage to the hippocampus, for example, se-
lectively impairs episodic memory, leaving semantic and procedural
information mostly (though not entirely) intact.

LONG-TERM MEMORY Figure 1: A standard taxonomy of
memory systems. Reproduced from
Squire and Zola (1996).
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The main problem with this treatment is that it misses the perva-
siveness of memory for many different computations (Dasgupta and
Gershman, 2021). This chapter will take a broader view, exploring the
idea that memory is fundamentally about keeping track of state—the
information about the past that is required to predict or control the



future. Which state needs to be tracked depends on the structure
of the process being predicted /controlled—hence the existence of
multiple brain systems encoding distinct kinds of memory.

1 Belief states and partial observability

To illustrate the general point that memory is everywhere, we’ll start
with a problem that (at first glance) doesn’t seem to involve mem-
ory at all. Returning to the material from Chapter 10, let’s consider
the problem posed by a standard Pavlovian protocol (delay condi-
tioning). On each trial, an animal is presented with a conditioned
stimulus (CS, such as an odor, light, or tone), followed after a delay
by an unconditioned stimulus (US, such as water, food, or shock).
With repeated trials, the animal begins to produce a conditioned re-
sponse to the CS, which reports its expectation about the upcoming
US. For example, a water US will evoke in rodents anticipatory lick-
ing of the water spout. To predict the next US, the animal needs to
know whether it is currently in the interstimulus interval (ISI) or the
intertrial interval (ITI), as well as how much time has elapsed since
the start of the interval. We will refer to the interval type (ISI or ITI)
as the macrostate and the interval duration as the microstate (Figure 2).
Together, these define a state space sufficient for reward prediction.
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To see why, note that we can write down Markov transition
T(s'|s,a) and reward R(s) functions when s = (m, T), with macrostate
m and microstate 7. Recall that the Markov property means that the
distribution over transition and rewards depends only on the current
state. Formally, if H denotes the state and action history, the Markov
property states that p(s’|H) = T(s'|s,a) and R(H) = R(s). Itis in
fact the definition of what it means for some set of variables to consti-
tute a state—i.e., the set is a state if the Markov property is satisfied.
When sensory observations x are sufficient to unambiguously specify
the state, we say that the environment is fully observable.

Unfortunately, the real world, and even simple Pavlovian proto-
cols, are rarely fully observable. The microstate representation as-
sumes that animals are perfect time-keepers, but it's well known that
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Figure 2: The state space of a Pavlo-
vian protocol. Each node represents a
temporal microstate (discretized here
for visualization), grouped by color ac-
cording to the superordinate macrostate
(ISI or ITI).

This is sometimes known as a semi-
Markov model, which factors the tran-
sition distribution into macrostate and
microstate components. It is equivalent
to a Markov model defined over the
joint macro/micro space.

Note that the state space is not neces-
sarily unique, though computationally
it is useful to prefer the minimal state
(the smallest set satisfying the Markov

property).
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their temporal precision decreases with elapsed time (see Chapter
10). This means that the microstate is partially observable in the sense
that the sensory observations provide ambiguous evidence about
elapsed time. To make matters worse, some Pavlovian protocols use
partial reinforcement schedules, where the US is delivered stochasti-
cally. When combined with the partial observability of the microstate,
this means that the macrostate is also partially observable: on trials
when the US is omitted, the animals doesn’t know for sure if it’s in
the ISI or the ITI. Under partial observability, sensory observations
do not in general satisfy the Markov property, p(s'|X) # T(s'|x,a),
where X is the history of observations. They are thus not proper
states.

The significance of partial observability lies in the fact that the
Markov property is crucial to the design of efficient learning algo-
rithms. Recall from Chapter 10 that the temporal difference (TD)
learning algorithm was derived from the Bellman equation, a recur-
sive decomposition of the value function that relies on the Markov
property. In fact, many computational algorithms rely on a notion
of state. For example, the Kalman filtering algorithm described in
Chapter 10 also requires that its inputs satisfy an analogous Markov
property. Models of decision making likewise assume, implicitly or
explicitly, some summary statistic of experience that suffices to spec-
ify preferences; decisions would not be feasible if they depended on
an agent’s entire history.

Fortunately, there is a way to restore the Markov property for
settings like Pavlovian protocols, by computing the posterior over
states given the history of observations, b(s) = p(s|X), or what we
will call a belief state. As the name suggests, the belief state is truly
a state—it satisfies the Markov property. In other words, the belief
state is a sufficient statistic for the observation history. This means we
can still use algorithms like TD learning even in partially observable
environments, as long as they operate over belief states (or some
approximation of belief states, as discussed below).

Before exploring the empirical implications of these ideas, let’s
take a step back and consider the big picture. We’ve posited a system
for Pavlovian reward prediction that requires a particular form of
history representation (i.e., a particular form of memory) encoded
in the belief state. On this view, Bayesian inference is a mechanism
for translating experience into memory. This is a normative pre-
scription for how memories should be designed in order to serve the
computational functions described in earlier chapters. The formal
setup can be applied far beyond Pavlovian conditioning, by ana-
lyzing what the underlying state space is and then constructing the
Bayesian belief state for that space. Even in cases where this compu-
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tation is intractable, it offers a powerful conceptual framework for
understanding the computational logic of memory.

2 Belief states in the dopamine system

The previous section claimed that belief states resurrect the viability
of TD learning in the face of partial observability. If the brain uses
this strategy, then we should expect to see signatures of belief states
in phasic dopamine activity, thought to report the prediction error
used by TD learning (see Chapter 10). Daw et al. (2006) suggested
that this could explain a puzzling phenomenon reported by Holler-
man and Schultz (1998). Animals were trained with a regular ISI
and then tested with irregular ISIs. The key finding was that early
reward (US) deliveries produced a pronounced excitation at the unex-
pected time of reward, yet no subsequent dip at the expected time of
reward. This is puzzling because it would seem that this should pro-
duce a negative prediction error. However, it makes sense if one takes
belief states into account. When the early reward occurs, the belief
state should shift probability mass to the ITI state, during which no
reward is expected.

A more direct test of belief states in the dopamine system was
undertaken by Starkweather et al. (2017). The experimental design,
shown in Figure 3, consisted of two different tasks (run in separate
mice). These were identical except for one crucial difference: Task
1 was fully observable (no reward omissions), whereas Task 2 was
partially observable (reward was omitted on 10% of trials). Mice
in each task experienced trials with several different odor CSs; we
will focus on Odor A, which was associated with a stochastic delay
(Gaussian-distributed with a mean of 2 seconds).
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In the fully observable Task 1, the reward will always arrive, so the
animal’s reward expectation should grow as time elapses. The corol-



lary of this growth is that when the reward arrives, the prediction
error should be smaller for later rewards (since the prediction error
is the difference between the received reward and its expectation).
The situation is quite different in the partially observable Task 2: the
reward may never arrive, so the animal’s reward expectation should
actually shrink as time elapses, due to the increasing probability that
it’s currently in an omission trial. Accordingly, the prediction error
should be larger for later rewards. The response of dopamine neu-
rons to reward followed this pattern, decreasing with ISI in Task 1
and increasing with ISI in task 2 (Figure 4).

Another source of evidence for belief states in the dopamine sys-
tem comes from a study in which mice were trained to expect two
different reward magnitudes (water volumes), clustered in blocks of
trials (Figure 5). Here the rewards themselves are the relevant sen-
sory signal for the hidden state. After training, the mice were tested

on intermediate reward magnitudes.
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According to the belief state model, prediction errors (and hence
dopamine responses) should grow with reward magnitude for rel-
atively small magnitudes. This is because the “small reward” state
is more probable for these magnitudes, and thus mice are receiv-
ing more than expected. The pattern should switch diametrically
for relatively large magnitudes, as the “large reward” state becomes
more probable and the mice are receiving less than expected. Mea-
surements of dopamine neuron activity confirmed these predictions,
exhibiting a “zig-zag” pattern as a function of reward magnitude

(Figure 6).
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Figure 4: Firing rate (after baseline
subtraction) of dopamine neurons

in response to reward after variable
ISIs. The circles connected by lines
correspond to Odors B and C. Adapted
from Starkweather et al. (2017).

Figure 5: Experimental design and
theoretical predictions from Babayan
et al. (2018).
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Figure 6: Normalized responses of
dopamine neurons to intermediate
reward magnitudes. Adapted from
Babayan et al. (2018).



3 Emergent belief states

The evidence for belief states in the dopamine system comes with a
significant caveat. It’s only feasible to feed belief states into the TD
learning machinery when these are relatively low-dimensional; in
high dimensions, the brain can’t compute belief states exactly (see
Chapter 5). Even if it could, it might not be a good idea to run TD
learning on such a high-dimensional representation due to concerns
about overfitting, which would lead to poor generalization.

One strategy is to reduce belief states to a smaller set of “belief
points” (Rao, 2010). Another strategy is to build a sufficiently expres-
sive function approximator that can be trained to compute represen-
tations suitable for reward prediction (Ni et al., 2022). Because belief
states are sufficient for reward prediction, this could plausibly yield
belief-like representations. However, this is not guaranteed, since
belief states are not the only valid choice of state representation; in

some cases, much more compressed representations are possible (Roy

et al., 2005), which might not even resemble belief states.

Hennig et al. (2023) studied a recurrent neural network (RNNN)
as the function approximator for value. Unlike the linear function
approximators discussed in Chapters 10 and 11, the Value RNN is
able to learn new representations of sensory data. By examining the
structure of these representations, Hennig et al. showed that they
are “belief-like” in the sense that their dynamics resembled what we
would expect from belief state updating (see next section), and belief
states could be approximately decoded from them (Figure 7). Impor-
tantly, the Value RNN representations were lower dimensional than
the belief states, retaining only the information in memory needed to
predict reward. Thus, compressed, belief-like representations can be
an emergent property of learning. Finally, Hennig et al. showed that
prediction errors generated by the Value RNN qualitatively capture
the patterns of dopamine neuron activity reviewed in the last section,
establishing that exact belief states are not necessary.
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This strategy is closely related to the
Monte Carlo approximations discussed
in Chapter 5.

This fits with anatomical arguments
that the striatum acts as a reward-
driven representational bottleneck,
dramatically compressing cortical
inputs (Bar-Gad et al., 2003).

Figure 7: Belief state decoding from a
recurrent neural network. The Value
RNN is a recurrent neural network
trained to predict future reward (i.e., to
estimate value). The fourth row shows
the time course of units in the Value
RNN. The fifth row shows belief states
decoded linearly from the Value RNN
units. Colors correspond to temporal
microstates, as in Figure 4. Reproduced
from Hennig et al. (2023).
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Taking stock of the story so far, we started with the problem of
partial observability, arguing that memory is essentially a quest for
state: efficient learning, prediction, and decision making all rely on
some form of Markov property, often violated in partially observable
environments, and restorable by an appropriate choice of memory.
Bayesian belief states offer a principled choice of memory, but we
showed that this is not necessary: an RNN trained to predict reward
also acquired the appropriate memory, a compressed version of belief
states. This suggests a general strategy the brain might use to solve
the problem of partial observability.

4 Recurrent neural network models of working memory

A closer look at the population dynamics of the Value RNN is in-
structive. For visualization purposes, it’s useful to project the popu-
lation activity into a 2D subspace spanned by the first two principal
components (Figure 8). Principal components analysis (PCA) is a
linear dimensionality reduction method, which can be obtained from
the singular value decomposition X = UWB', where (in our setting)
X is the time-by-neuron activity matrix, U is a time-by-time matrix
(the left singular vectors), W is a time-by-neuron diagonal matrix (the
singular values) in decreasing order, and B is a neuron-by-neuron
matrix (the right singular vectors). The top K principal components
are obtained by taking the first K columns of the matrix formed by
UW. These are the components that capture the most variance in the

Z3

data, in the sense that reconstructing the data using only these com-
ponents will give the best approximation of all possible combinations

of components.
This analysis reveals a single “fixed point” corresponding to the

ITI, which is stable in the absence of sensory input. Such fixed point Z;

structure is rational for the Starkweather task, because the ITI is Figure 8: Dynamics of the Value RNN
trained on Task 2 of Starkweather

. . . . . . . et al. (2017). Each axis represents one
elapsed time in the ITI is uninformative about the time until the next principal component. Reproduced from

drawn from a geometric distribution, which has the property that

trial. When an odor is presented, the activity is abruptly kicked out Hennig et al. (2023).
of the fixed point, and then continues to slowly evolve after the odor
is removed, until reward is received (which kicks the system into
another part of the activity space, gradually decaying back to the ITI
fixed point) or the next trial begins (on omission trials).

The dynamics exhibit both memory maintenance (the trajectory
encodes a trace of the stimulus) and time-keeping (the trajectory en-
codes a representation of elapsed time). This reflects the underlying
state structure: the stimulus trace corresponds to the macrostate, and
the temporal trace corresponds to the microstate. It turns out that
a similar mixing of stimulus and timing information is present in



more conventional “working memory” tasks involving the short-term
maintenance and manipulation of stimulus information.

In a classic study, Fuster and Alexander (1971) recorded neurons
in prefrontal cortex while monkeys performed a delayed selection
task. A food was hidden underneath one of two objects, followed by
a delay period during which the monkeys could not see the objects.
After the delay period, monkeys could then retrieve the food. Some
neurons were activated by the cue (object presentation), and then
exhibited persistent firing during the delay interval (Figure 9).

Cue Delay
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This discovery heralded many subsequent studies of persistent
activity during working memory tasks, as well as RNN models de-
signed to explain this phenomenon (see Wang, 2021, for a review).
A standard mechanism in these models is recurrent excitation that
produces “reverberating” activity, allowing stimulus representation
to be maintained even after the stimulus has disappeared. To store
information persistently, the network must represent the stimulus as
an attractor—a network state that is robust to small perturbations. We
already encountered a particular kind of attractor (a fixed point) in
our discussion of the Value RNN dynamics. Attractors can also be
lines and rings (continua of stable states with different topologies),
sometimes exhibiting oscillatory dynamics.

4.1 Beyond persistent activity

Persistent activity is usually understood to mean the kind of pattern
noted by Fuster and Alexander: single neurons that are activated by
a stimulus and continue firing during a delay period. Note, how-
ever, that persistence in the informational sense (the ability to read
out stimulus information from neural activity) does not inherently
require persistent activity in the classical sense. In fact, typically only
a small proportion (5-10%) of recorded prefrontal neurons satisfy
the classical definition. Many neurons have complex time-varying
responses, including ramps and oscillations. How, then, does the
prefrontal cortex stably maintain information in memory?

This brings us back to the analysis of population activity. Murray
et al. (2017) used PCA to characterize prefrontal activity recorded
during working memory tasks (the oculomotor delayed response, or
ODR, task is illustrated in Figure 10). They did this in a somewhat
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Figure 9: Spikes recorded from a
prefrontal neuron during a delayed
selection task. Reproduced from Fuster
and Alexander (1971).

Some form of inhibition is also usually
needed to prevent runaway excitation.
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Figure 10: The oculomotor delayed
response (ODR) task. On each trial, the
subject fixates at the center while a cue
is presented at one 8 locations. After a
delay, the subject makes a saccade to
the remembered location. Reproduced
from Murray et al. (2017), based on the
task studied in Constantinidis et al.
(2001).
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different way than what was described above. First, they constructed
a stimulus-by-neuron matrix by averaging delay activity for each
stimulus-neuron pair; this discards time information but retains stim-
ulus information, so they referred to the top principal components
as the mnemonic subspace. They then did a complementary analysis of
the time-by-neuron matrix obtained by averaging across stimuli for
each time-neuron pair, yielding a dynamic subspace (orthogonalized
with respect to the mnemonic subspace) that varies with time but
discards stimulus information.

The results of the subspace analysis for the ODR task are shown

Figure 11: Subspace analysis of pre-
in Figure 11. As expected based on the structure of the analysis, frontal activity during the ODR task.
Population trajectories are projected

. L into the mnemonic subspace (Stim-
namic subspace reflects orthogonal temporal variation. These results ulus PC1 and PC2) and the dynamic
are non-trivial, because Murray et al. showed that several standard subspace (Time PC1), color-coded by
location, as in Figure 10. Reproduced
from Murray et al. (2017), based on data
attractor” model that has been used to model persistent activity dur- reported in Constantinidis et al. (2001).

the mnemonic subspace reflects the stimulus location, while the dy-

models cannot capture them. For example, they studied a “stable

ing ODR tasks (e.g., Compte et al., 2000). Each neuron is tuned to

a particular location. Neurons tuned to nearby locations excite one
another, while inhibiting neurons tuned to distant locations. This
produces a ring attractor: stimulus information is stably maintained
as an activity bump on a ring of locations. Small perturbations are re-
sisted, while larger perturbations cause the bump to move around the
ring. Consequently, the model does not show much temporal varia-
tion during the delay period (Figure 12), in contrast to the prefrontal
population.

Figure 12: Subspace analysis of two
Stable attractor Stable subspace models during the ODR task. Repro-

duced from Murray et al. (2017).

Stim, P,

Motivated by their empirical results, Murray et al. (2017) devel-
oped a “stable subspace” model that is similar in many respects to
the stable attractor model, but with a key difference: the network
connectivity structure is organized to have a dynamic subspace in
addition to the mnemonic subspace. By construction, activity varies
across time in the dynamic subspace, while remaining stable in the
mnemonic subspace. This reproduces the distinctive geometry of the
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neural data when population activity is projected onto the principal
components (Figure 12).

4.2 Modeling stable attractors and stable subspaces

To make these ideas more formal, let’s write down the firing rate
dynamics of a linear dynamical system, variants of which which
we’ve now used several times:

X = —x + Wx+g(s), (1)

where T is the time constant, W is a recurrent weight matrix, and
g(s) is the feedforward drive for stimulus s. In a canonical stable
attractor network for a one-dimensional variable (e.g., angle in the
ODR task), neuron d is tuned to a particular stimulus, which we
denote by s, such that g;(s) is maximal at s}. The recurrent weight
matrix is specified by a symmetric kernel K that depends only on
the distance between the preferred stimuli of two neurons: W;; =
K(|sf — h |). This guarantees that W is a symmetric normal matrix,
with as many orthogonal eigenvectors as there are neurons; each
eigenvector corresponds to one coding direction in stimulus space
(aligned with the tuning function of the corresponding neuron) that
can be represented independently of other coding directions. If a
stimulus is presented that maximally excites neuron 7, an activity
bump will form at neuron i and its neighbors, corresponding to one

of the eigenvectors. As long as at least one eigenvalue of W is equal More generally, coding M dimensions
requires at least M eigenvalues equal to

to 1, the bump will be stable (a fixed point attractor). In the absence .

of a stimulus, any point on the ring is stable (a ring attractor).

A stable subspace attractor can be constructed in the same way,
except with a non-normal connectivity matrix. This can be accom-
plished by having some of the eigenvectors point in directions that
are not aligned with any of the tuning functions. Rather than re-
laxing into a bump when stimulated, these eigenvectors will evolve
over time in ways that are not strongly stimulus-driven—this is the
dynamic subspace. The eigenvectors that are aligned with stimulus
tuning constitute the mnemonic subspace.

4.3 What are subspaces and why do we have them?

From a decoding perspective, subspaces are just different choices
of linear readout weights. This means that the same network can
support downstream processing of both stimulus and temporal infor-

mation. This multiplexing also supports more complex tasks, where Another example of multiplexing is

in the anterior lateral motor cortex

. . of mice, which encodes preparatory

the Starkweather task discussed earlier. More generally, the use of activity for an upcoming action (Ina-
gaki et al., 2019). When the stimulus-
response delay is fixed (but not when
it’s random), the activity exhibits
ramping dynamics to a fixed point
representing the chosen action.

stimulus and temporal information need to be combined, such as in



multiple subspaces to encode different representations allows net-
works to flexibly perform a variety of tasks. This gives rise to “mixed
selectivity” (tuning of the same neuron to multiple stimulus features),
found in many parts of the brain, particularly the prefrontal cortex
(Tye et al., 2024).

One way to look at mixed selectivity is through the lens of the
memory-state duality. In many organisms, the relevant state spaces
are preordained by their biological niche, and therefore they have
specialized memory systems for particular kinds of memoranda. Pri-
mates (and a few other species) live in more complex and variable
niches, where the relevant state space might need to be learned on
the fly. This doesn’t mean that primates have unlimited flexibility;
task performance is still constrained by the feature space represented
in areas like the prefrontal cortex. The point is that this feature space
is high-dimensional, enabling greater flexibility than would be pos-
sible with the low-dimensional structure implemented in specialized
memory systems.

5 Long-term memory

The kinds of memory we have been talking about so far are short-
lived, limited fundamentally by leakage and noise—processes that
can only be resisted by refreshing of the activity state encoding in-
formation. Yet somehow we are able to retain certain memories over
weeks, months, and years. It is widely believed that such long-term
storage depends on modification of synaptic strength, a “passive”
storage medium that does not require continual refreshing (although,
like other cellular processes, synapses need to be maintained in the
face of molecular turnover). Before getting into biological mecha-
nisms, let’s return to the theme of this chapter, asking what kind of
partial observability is being solved by a long-term memory system.
Consider an agent exposed to a stream of observations, x(t). To
predict the next observation x(t + 1), it needs to know the obser-
vations at a set of past time points {fy,...,fy}. Since these are not
part of the observation at time ¢, the process is partially observable.
Thus, to define a Markov process, we require a state representation
s(t) = (x(f1),...,x(fx)). What makes this hard is that the rele-
vant temporal indices are not necessarily fixed; they can potentially
change across time. For example, suppose you need to remember
where you put your keys. This entails retrieving the past time point
at which you last saw your keys, which is different every time you
are faced with this query. The long-term memory system must there-
fore be able to retrieve information arbitrarily far in the past. It must
also be able to answer a wide range of queries for the same observa-
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For example, ring attractor networks
are used in flies to maintain a stable
memory of heading direction (Kim
et al., 2017). This network is used for
one and only one task.

Other long-term storage mechanisms
might be at play as well, such as molec-
ular memory codes (Gershman, 2023).



tion stream.

One possible solution is a single high-capacity database of past ob-
servations. Then the problem becomes selectively retrieving the right
information for a given query (i.e., reducing interference between
memories). Selective retrieval is facilitated by labeling memories with
addresses that can be matched to search queries, much like modern
databases. As we will see, the structure of the address space is an
important design question.

5.1 Retrieval interference is the critical limiting factor

You might be thinking to yourself: If long-term memory really has
such high capacity, why do I forget so many things? Why can’t I
remember the name of my first grade teacher or what I ate for break-
fast 10 years ago? Although naturally the brain, like any physical
memory system, has a capacity limit, it may come as a surprise that
this capacity limit (whatever it might be) is not the limiting factor on
memory performance. Instead, it is interference between memories at
the time of retrieval that seems to be the critical limiting factor.

The evidence supporting this argument comes from a number
of different sources. First, though we lack a decisive measure of the
brain’s memory capacity, estimates typically range between 107 and
10'5 bits (Dudai, 1997). Estimates of total minimally compressed
sensory input range between 103 and 10'7 bits. Thus, with more
powerful compression, much of the sensory input over a lifetime
could plausibly be stored in the brain.

These very loose estimates only take us so far. More convincing
is evidence from behavior. If human memory ever actually hit the
capacity limit, we would expect an abrupt inability to store new
information without erasing old information. Yet no evidence for this
prediction exists. On the contrary, studies of human memory show
that information can be stored for decades despite minimal rehearsal.
For example, Hall (1991) showed substantial retention of high school
algebra for half a century even in the absence of rehearsal during
the intervening years. Furthermore, a capacity limit explanation for
forgetting would not be able to explain why we forget over much
shorter timescales.

When information is forgotten, it is usually not permanently
erased but only temporarily inaccessible. For example, memory
performance typically declines with longer retention intervals, but
careful experiments reveal that it is accessibility, not precision, that is
declining (Berens et al., 2020; Diamond et al., 2020). When very old
memories are retrieved, they are just as precise as recent memories.

Many studies have shown that supposedly lost memories can be
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recovered under a variety of circumstances, including appropriate
retrieval cues (Wagenaar, 1986), more retrieval attempts (Buschke,
1974), and even just waiting long enough before attempting retrieval
(Payne, 1987). Amnesia induced experimentally or from neurological
damage is also frequently reversible (Lewis et al., 1968; Kapur, 1999).

This brief survey hopefully makes clear that a high-capacity long-
term memory system in the brain is empirically plausible. The chal-
lenge we take up in the next section is to make it computationally
plausible.

5.2 The key-value data structure

Many books include an alphabetical index that specifies where in
the book important information can be found. The alphabetical or-
ganization is useful for information retrieval, but does not carry any
information content itself. The brain may use a similar division of
labor between indexing and content (Gershman et al., 2025). We will
first formalize this idea using a formalism from machine learning,
and then discuss how it maps onto brain circuitry.

A workhorse of modern machine learning is the transformer archi-

tecture (Vaswani et al., 2017), the foundation of sequence processing The term “attention” here has a specific
technical meaning which does not

B ., . . . . cleanly map onto the mechanisms of
attention” mechanism to select past inputs for retrieval. Each in- attention discussed in Chapter 6.

systems like large language models. Transformers use a parallelized

put x(t) is associated with a key vector k(t) and a value vector v(t).

Intuitively, the key vector is an index that defines the “address”

(analogous to page number in a book) where content, represented “Value” is another technical term which
by the value vector, is stored. When input x(t) is received, it gets is unrelated to its meaning in RL theory.
mapped to a query vector () in the same address space as the keys,

so that they can be matched by a similarity function S(k,g). These The mappings from observations to
keys, queries, and values, are typically

similarity values are then used to compute an attention score vector - ‘
learned linear transformations.

a = o[S(k(< t),q(t))], where k(< t) denotes the set of keys at past
time points, with the similarity function evaluated in parallel all of
these time points, and ¢/[-] is a “separator” function that can amplify
strong matches and suppress weak matches. The most widely used
similarity function is the inner product: S(k,q) = gk'. The most
widely used separator function is the softmax:

~exp[S(k(< t),q(1))]
olstk(< ()] = & STk, 3 ()]

The resulting attention score defines the retrieval strength for content

()

(the value vector) linked to each past input, such that the retrieved
value is a linear composite of past values weighted by their attention
scores:

o(t) = ) a(t)o(t). )



Because the attention vector is normalized, we can potentially in-
terpret it as a belief state—i.e., posterior probabilities over a hidden
state. In this case, the hidden state s € {1,...,t — 1} corresponds to
which past input is relevant at the current time point. The retrieved
value can then be understood as the expectation of the value vectors
under the posterior.

5.3 How the brain implements key-value memory

There are multiple ways to implement key-value memory in the brain
(e.g., Tyulmankov et al., 2021; Whittington et al., 2022; Kozachkov
et al., 2023; Chandra et al., 2025), though we will not review them in
detail. A general schema for key-value memory is shown in Figure
13. Sensory inputs project to a population of neurons encoding at-
tention scores, which then project to an output population encoding
retrieved value. The input-to-attention weights correspond to keys;
the attention-to-output weights correspond to values.

To a first approximation, this architecture can be mapped onto
the hippocampal-cortical system, where the hippocampus encodes
attention scores, which are used to retrieve content (value) stored in
cortex. On this view, the hippocampus does not itself encode mem-
ory content, but rather serves as an address space for similarity-based
indexing. Consistent with this view, memory retrieval relies on re-
instatement of activity in cortex (putatively activation of the output
layer in Figure 13), which depends on the hippocampus (Tanaka
et al., 2014; Hebscher et al., 2021). When parts of cortex are degraded,
for example in semantic dementia, an input can still be recognized
as old vs. new (i.e., the index is relatively intact), but little semantic
information about the input can be retrieved (Graham et al., 1999).

How is the hippocampal address space organized? One clue
comes from a study of food caching birds (black-capped chickadees),
who have the remarkable ability to remember hundreds of cache
locations over several weeks with millimeter precision (Hitchcock
and Sherry, 1990). Chettih et al. (2024) recorded from hippocampal
neurons during food caching and retrieval, identifying a sparse and
transient “barcode” pattern of activation that was unique to individ-
ual caches and reinstated at retrieval (Figure 14). Fang et al. (2025)
showed that barcodes could be captured by an RNN with random
recurrent weights, transiently amplified during memory storage to
produce an effectively random pattern of activity. By associating
these patterns with sensory input (the input-to-key mapping in the
key-value framework), the patterns were reactivated when a cache
location was approached.
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The implicit joint probability distribu-
tion over hidden state s and query g is
given by p(s,q) « exp[S(k(s),q)]. The
belief state is given by b(s) = p(s|q),
which is equivalent to the attention
score vector .
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Figure 13: Neural architecture for key-
value memory.

This view formalizes a venerable

idea about hippocampal function, the
hippocampal indexing theory (Teyler
and DiScenna, 1986; Goode et al., 2020).

The barcode acts similarly to a hash
code in computer science, assigning
memories to memory addresses with
fixed dimension. A more sophisticated
random addressing scheme was devel-
oped by Chandra et al. (2025), building
on the entorhinal attractor network
discussed in Chapter 13.
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Figure 14: Schematic of hippocampal
barcode activity during food caching
and retrieval. Reproduced from Chettih
et al. (2024).

This chapter conceptualized memory as a solution to partial observability—

the unavailability of state information, which violates the Markov
property and cripples efficient computation. This conceptualization
helps us appreciate the logic underlying the organization of memory
systems—why do we have different forms of memory at all? Dif-
ferent memory systems are designed to deal with different forms of
partial observability, by constructing approximate belief state repre-
sentations tailored to the problem domain. Belief states restore the
Markov property and rescue efficient computation. In brief, memory is

a quest for state.

Study questions

1. The study of food caching in birds suggests a random addressing
scheme in the hippocampus, much like a hash code. What are the
advantages and disadvantages of such a scheme?

2. How can we reconcile the different functional views of the hip-
pocampus (predicting, modeling, remembering) that have been
discussed in this chapter and earlier chapters?

Further implications of this conceptual-

ization are discussed in Gershman and

Daw (2017).
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