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Roadmap

▶ The sensory data received by the brain provides incomplete
and noisy information about the environment state.

▶ This lecture describes models of how the brain computes a
probability distribution over (or point estimate of) hidden
states.

▶ Problem: behavior seems to deviate from Bayes-optimal
inference.

▶ Can we understand these deviations through the lens of
computational and representational constraints on inference?
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Is human behavior Bayesian?

▶ Answering this question is trickier than it might seem,
because we need to know what (if any) prior, likelihood,
posterior, and utility function the brain uses.

▶ One approach is to manufacture experimental tasks that
tightly control all of these factors and impose them on human
subjects.

▶ This approach has the advantage of allowing us to precisely
answer the question, but it has the disadvantage of being
contrived.



Is human behavior Bayesian?

▶ Answering this question is trickier than it might seem,
because we need to know what (if any) prior, likelihood,
posterior, and utility function the brain uses.

▶ One approach is to manufacture experimental tasks that
tightly control all of these factors and impose them on human
subjects.

▶ This approach has the advantage of allowing us to precisely
answer the question, but it has the disadvantage of being
contrived.



Is human behavior Bayesian?

▶ Answering this question is trickier than it might seem,
because we need to know what (if any) prior, likelihood,
posterior, and utility function the brain uses.

▶ One approach is to manufacture experimental tasks that
tightly control all of these factors and impose them on human
subjects.

▶ This approach has the advantage of allowing us to precisely
answer the question, but it has the disadvantage of being
contrived.



The urn task

Which urn did       come from?

A
p(A) = 0.4

B
p(B) = 0.6



Posterior log odds

We can reduce the binary inference problem to a one-dimensional
log odds:

log
p(A| )

p(B| )
= log

p( |A)
p( |B)

+ log
p(A)

p(B)
,

where the first term is the likelihood log odds and the second term
is the prior log odds.



Generalized log odds

To quantitatively evaluate the Bayesian hypothesis, we can
generalize this equation to a more flexible model with coefficients
α and β:

y = α log
p( |A)
p( |B)

+ β log
p(A)

p(B)
,

where y is the response generated by human subjects.



Fitted coefficients

[Zhu & Griffiths 2023]



Take-aways

▶ Both coefficients are systematically below 1 (under-reaction),
though the prior coefficient (β) is pretty close to 1.

▶ Thus, even in this idealized setting, people don’t perfectly
execute Bayes’ rule: Although they update in the correct
direction, they systematically under-react to the likelihood
(i.e., the urn composition in this case).
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Resource-rational analysis of costly inference

▶ Under-reaction suggests that updating from the prior to the
(approximate) posterior is costly.

▶ Let’s replace the true posterior p(s|x) with an approximate
posterior q(s|x) to make explicit that we are no longer
assuming exact Bayesian inference.

▶ Assume the action a output deterministically by policy π is
the approximate posterior: a = q.
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Resource-rational analysis of costly inference

Cost of updating after observing signal x using the
Kullback-Leibler (KL) divergence:

D[q(s|x)||p(s)] =
∑
s

q(s|x) log q(s|x)
p(s)

.

Belief updates that move the approximate posterior q(s|x) farther
from the prior p(s) are more costly.



Resource-rational analysis of costly inference

Expected cost c(π) under policy π, which averages over signals:

c(π) =
∑
x

p(x)D[q(s|x)||p(s)].



Resource-rational analysis of costly inference

Utility should be higher when our beliefs are closer to the posterior.
Suppose rewards are signals (r = x) and that the utility derived
from these signals is the negative KL divergence between the
approximate and true posterior:

u(r) = −D[q(s|x)||p(s|x)]

Expected utility:

ū(π) = E[u(r)|π] = −
∑
x

p(x)D[q(s|x)||p(s|x)]



Resource-rational analysis of costly inference

Optimal policy:
π∗ = argmax

π: c(π)≤C
ū(π)

where C is the capacity limit.



Resource-rational analysis of costly inference

Equivalent unbounded optimization problem (Lagrangian):

π∗ = argmax
π

ū(π)− λc(π)

where the Lagrange multiplier is:

λ =
∂ū(π∗)

∂c(π∗)

with c(π∗) = C (i.e., the optimal policy operates at the capacity
limit).



Resource-rational analysis of costly inference

Closed-form optimal policy [Zhu & Griffiths 2023]:

q∗(s|x) ∝ p(x |s)1/(1+λ)p(s)

This is just Bayes’ rule with a down-weighted likelihood. This
implies under-reaction to the likelihood, as seen experimentally.



Neural implementation

▶ We now construct a neural model that approximates the
posterior over s ∈ {A,B}.

▶ Our basic primitive is the integrate-and-fire neuron (no leak)
with membrane potential dynamics governed by:

C µ̇ = I (t)

where C is the membrane capacitance, and
I (t) =

∑
d wdzd(t) is the input current, which linearly

integrates presynaptic spikes.
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Neural implementation

▶ Consider a population of presynaptic neurons, where neuron d
has tuning function fd(s). The log-likelihood under Poisson
spiking is given by:

log p(x |s) =
∑
d

xd log fd(s)− fd(s)− log xd !

where xd is the spike count for neuron d over some time
window.

▶ The third term doesn’t depend on s, so we can ignore it. We
will also ignore the second term under the assumption that∑

d fd(s) is a constant.

▶ After discarding these terms, the log-likelihood ratio becomes:

log
p(x |s = A)

p(x |s = B)
=

∑
d

xd log
fd(A)

fd(B)
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Neural implementation

If we set the synaptic strength of neuron d to be wd = log fd (A)
fd (B) ,

the postsynaptic neuron will accumulate weighted spike counts
over time such that its membrane potential represents the
posterior log-odds:

µ(t) =
∑
d

xdwd = log
p(s = A|x)
p(s = B|x)

,

provided the resting potential is given by the prior log odds:

µ(0) = log
p(s = A)

p(s = B)



Example: motion direction discrimination

Task is to determine the direction of coherently moving dots.

60%40%



Example: motion direction discrimination

▶ Relevant presynaptic population is in extrastriate area MT,
where most neurons are tuned to particular motion directions.

▶ Tuning functions can be modeled as a cosine function defined
over the space of motion directions (s ∈ [0, 360]):

fd(s) = exp[cos(s − s∗d)/ν] (1)

where s∗d is the preferred direction for neuron d and ν is the
tuning width.

▶ One synapse downstream, neurons in parietal area LIP
integrate the spiking of MT neurons, enabling them to
compute the posterior log odds.
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Example: motion direction discrimination

LIP neurons ramp up over time during viewing of the random dot
motion stimulus.

Fig. 8. Population response from 104 LIP neurons during the direction discrimination task. The average firing rate is plotted as a function of time during the motion-viewing and 

delay periods. Solid and dashed curves are from trials in which the monkey judged direction toward and away from the RF, respectively. Error trials are not shown. Both the time 

course and magnitude of the response are affected by the strength of random-dot motion, particularly during the motion-viewing period.

DOI: (10.1152/jn.2001.86.4.1916) 

Time (s)

[Shadlen & Gold 2001]



Another example: discrete evidence accumulation

▶ Drawback of the random dot motion stimulus: difficult to
precisely quantify the information value of the stimulus at any
given time.

▶ Yang & Shadlen [2007] addressed this issue, recording LIP
neurons while monkeys viewed a sequence of abstract shapes.

▶ At the end of the sequence, the monkey needed to choose one
of two visual targets.

▶ The correct target was determined by the shape sequence:
each shape was associated with a particular log-likelihood
ratio, such that the total log-likelihood ratio could be
obtained by summing up the contributions of the shapes in
the sequence.
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Another example: discrete evidence accumulation

Changes in the firing rate of LIP neurons are linearly related to the
log-likelihood ratio.

firing rate and choice is a hallmark of LIP neurons and was nearly
guaranteed by our sampling procedure (see Methods). In the present
context, the LIP response reveals the outcome of a decision. Far more
interesting is the evolution of the response that accompanied the
sequential presentation of the shapes. Although a final decision must
await the presence of all four shapes, the responses of this neuron were
modulated by partial evidence as the shapes appeared in sequence.

The example neuron shown in Fig. 2a responded strongly to the
onset of the choice targets that accompanied the first shape. This short
latency response is probably caused by the appearance of Tin (ref. 26),
but by the end of the first epoch the firing rate was affected by one of
the ten shapes that appeared near the fixation point. The response was
greater for shapes that provided evidence in favour of Tin (Fig. 2b).
The response curves shown in this epoch sort the 20 possible condi-
tions (10 shapes 3 2 choice target configurations) into quintiles that
rank the total logLR for the choice target in the response field. (Note
that the logLR quantifies the WOE in favour of Tin, regardless of its
colour. We use this convention throughout the article for simplicity;
but see Appendix C in Supplementary Information.) This difference
was even more striking in the second epoch. Again, we grouped the
200 possible conditions (100 possible 2-shape sequences 3 2 choice
target configurations) into 5 groups based on the total logLR for
reward at Tin. The same analysis was performed in the next two
epochs. In each epoch, the firing rates are affected by the logLR.

To quantify the effect of logLR on the neural response, we calcu-
lated the average firing rate for each trial in the epoch from 300 to

600 ms after shape onset, and plotted this value as a function of the
logLR (Fig. 2c). The slope of the line of best fit provides an index of
the response modulation by logLR and a test of statistical reliability
(null hypothesis, H0: slope 5 0). This neuron exhibited clear modu-
lation of its firing rate as a function of logLR in all epochs (P , 0.01).
The change in spike rate per ban is indicated in each panel. The
positive value implies that the neuron increased its firing rate when
the logLR favoured the target in its response field.

We observed a similar pattern of results for the sample of 64 neu-
rons (Fig. 3). The response averages reveal a graded modulation of
firing rates that correspond to the magnitude of logLR that favours
the target in their response field. When the evidence was against
the target in the response field, the population neuronal response
decreased. The population average firing rate is well described by
a linear function of logLR (Fig. 3b; P , 0.01; see equation (8) for
H0 : bn~0). The modulation indices (in units of spikes per second
per ban) are shown for each neuron from the two monkeys (Fig. 3c).
Although there is some heterogeneity across the population, the
histograms reveal that the change in firing rate per ban is remarkably
similar in all four epochs. This finding is supported by data from both
monkeys (see Supplementary Fig. 5). In each epoch, LIP registers the
appearance of a new shape by adjusting its firing rate to reflect the
updated logLR in favour of Tin (see Supplementary Movies, which
are described briefly in Supplementary Appendix D).

According to this theory, each of the ten shapes should cause a
change in LIP activity in accordance with the weight it was assigned.
We estimated these changes from the population by attempting to
isolate the response to each new shape in each of the four epochs. The
responses in the first epoch are obscured by the large visual response
accompanying the onset of the choice targets. However, in epochs
2–4, we subtracted the firing rate that the neuron achieved in the
previous epoch (see Methods). This procedure yields an estimate of
the magnitude and time course of the change in firing rate caused by
each of the ten stimuli (Fig. 4).

The shapes caused the firing rate to change with a fairly stereo-
typical time course, beginning ,150–200 ms after shape onset without
any obvious sign of decay (Fig. 4a). The change in firing rate appears to
reflect both the sign and the magnitude of the assigned weights. This is
easier to discern from Fig. 4b, which shows the average change in firing
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Figure 3 | Population analyses. a, Effect of logLR on the population average
firing rate, presented in the same format as Fig. 2b (30,930 trials from 64
neurons; bin width, 5 ms). b, Firing rate varies linearly with logLR in each
epoch, presented in the same format as Fig. 2c. The slope is the best fitting
line to the population averages in a. c, Distribution of modulation indices
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Incorporating costly inference

▶ Cost parameter λ enters through a multiplier of the
log-likelihood ratio.

▶ This can be interpreted as a global modulation:

log
p(x |s = A)1/(1+λ)

p(x |s = B)1/(1+λ)
=

1

1 + λ

∑
d

xd log
fd(A)

fd(B)
.

▶ As λ increases (lower capacity C ), the log-likelihood is
suppressed.

▶ Possible mechanistic interpretations: suppression of firing,
suppression of synaptic strengths, or suppression of the
postsynaptic membrane potential.
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Case study: effects of food restriction on orientation
discrimination

[Padamsey et al 2022]



Case study: effects of food restriction on orientation
discrimination

▶ Plug cosine tuning functions into the costly inference model:

log
p(x |s = A)1/(1+λ)

p(x |s = B)1/(1+λ)
=

1

ν(1 + λ)

∑
d

xd log
cos(A− s∗d)

cos(B − s∗d)
,

where A and B are different frequencies.

▶ This equation makes clear how λ can be interpreted as scaling
the tuning width ν.
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Case study: effects of food restriction on orientation
discrimination

▶ The mechanism underlying the tuning change was a reduction
in AMPA receptor conductance, which was compensated for
by increased input resistance and depolarization of the
membrane potential.

▶ This had the effect of maintaining roughly the same firing
rates but making firing more variable.

▶ The broader orientation tuning essentially reflects this higher
variability (i.e., a higher probability of randomly responding to
stimuli farther away from a neuron’s preferred stimulus).
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Case study: effects of food restriction on orientation
discrimination

Simulation of the costly inference model:
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Study question

How would you modify the random dot motion discrimination task
to directly test predictions of the resource-rational inference model?



Magnitude estimation

Some examples:

▶ How far?

▶ How big?

▶ How long?

▶ How many?
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Gaussian magnitude estimation
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s̄<latexit sha1_base64="TrDTw/V1hVSvyZTyuxruVZv+6Y4=">AAACH3icbVDLSgNBEJz1GeNbj14Wg+Ap7IqoR0EPHg0YFbJBeiedZHAey0yvMSz5Aq/6AX6NN/Gav3ES9+CroKGo6qa7K82kcBRF42Bmdm5+YbGyVF1eWV1b39jcunYmtxyb3Ehjb1NwKIXGJgmSeJtZBJVKvEnvzyb+zQNaJ4y+omGGbQU9LbqCA3mp4e42alE9miL8S+KS1FiJy7vNoJJ0DM8VauISnGvFUUbtAiwJLnFUTXKHGfB76GHLUw0KXbuYXjoK97zSCbvG+tIUTtXvEwUo54Yq9Z0KqO9+exPxP6+VU/ekXQid5YSafy3q5jIkE07eDjvCIic59AS4Ff7WkPfBAicfTjXROOBGKdCdIgHbU/A4KhKToQUydvLCQFBfCiXIFaU/qvrs4t9J/SXXB/X4qH7YOKydnpcpVtgO22X7LGbH7JRdsEvWZJwhe2LP7CV4Dd6C9+Djq3UmKGe22Q8E40+sEaPX</latexit>s

Gray curve: prior, p(s|s̄). Black curve: signal distribution, p(x |s).
Blue line: posterior mean ŝ.



Gaussian magnitude estimation

Signal-generating process:

x ∼ N (s, σ2
x), s ∼ N (s̄, σ2

s ).

The posterior mean (also the posterior mode) is a convex
combination of the signal x and the prior mean s̄:

ŝ = wx + (1− w)s̄,

where w = σ2
s

σ2
x+σ2

s
is the signal sensitivity.



Central tendency effect

The bias for Gaussian magnitude estimation is given by:

E[ŝ − s|s] = (1− w)(s̄ − s).

The prior mean attracts the posterior mean (bias always pushes ŝ
towards s̄), and the strength of this attraction is inversely
proportional to the signal sensitivity w . Many studies show such a
central tendency effect.



Moderators of central tendency

▶ Central tendency should be stronger when the signal variance
is large relative to the prior variance.

▶ Signal variance tends to increase with magnitude, possibly due
to a nonlinear transformation from objective to subjective
magnitude (more on this later).

▶ Consistent with this prediction, central tendency is stronger
for larger magnitudes, and shorter stimulus durations [Xiang
et al 2021].
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Repulsion

▶ Sometimes human judgments are repulsed from the prior
mean—an apparently “anti-Bayesian” bias.

▶ For example, people judge a smaller object to be heavier than
a larger object with the same mass, the size-weight illusion.

▶ This seems to defy the prior that larger objects tend to be
more massive.
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Formalizing attraction/repulsion

▶ Bias is attractive when pointing towards the prior mode,
repulsive when pointing away from the prior mode.

▶ Let p′(s) denote the derivative of the prior p(s). Then
repulsion when E[ŝ − s|s]p′(s) < 0.
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Formalizing attraction/repulsion

▶ The direction bias can be approximated [Hahn & Wei 2024]:

E[ŝ − s|s]p′(s) ≈ 1

J(s)

[
p′(s)2

p(s)
− J ′(s)p′(s)

J(s)

]
where J(s) is the Fisher information (measure of coding
precision).

▶ Repulsion will occur when J ′(s) and p′(s) have the same sign
and their product is large enough to outweigh the first term.

▶ Consistent with Bayes’ rule!
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Diminishing sensitivity

▶ Many psychophysical studies show diminishing sensitivity for
larger magnitudes. Neurally this corresponds to decreasing
coding precision, J ′(s) < 0.

▶ This implies that repulsion should tend to occur when
p′(s) < 0.

▶ Many natural magnitudes have this property. For example, the
distribution of spatial frequencies in natural images falls off
according to a power law: p(s) ∝ s−α with α between 1 and
2.
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Neural correlate of diminishing sensitivity

Spatial frequency tuning in V1 can be modeled using Gaussian
tuning functions defined over log-transformed frequency.Population representation – orientation and spatial frequency

[Movshon, unpublished]



Neural correlate of diminishing sensitivity

▶ If we assume Poisson spiking and a uniform density of
preferred stimuli in log space, we get (in the limit of a large
population):

J(s) ∝ 1

s2

▶ Thus, diminishing sensitivity, J ′(s) < 0, can be derived from
an approximation of the empirical tuning functions.

▶ This satisfies the assumptions underlying our analysis of
repulsion.
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Summary

▶ We started with the normative ideal of Bayesian inference,
and then tried to explain both the successes and failures of
this ideal as a model of inference in the brain.

▶ The key idea is that computational and representational
constraints shape inference in ways that comport with
empirical observations.

▶ We also saw how these constraints can be realized in simple
neural networks.
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Study question

In what ways might resource-rational inference vary systematically
across individuals (e.g., children, older adults, clinical
populations)? How would you test this empirically?


