

# Lecture 4: The Bayesian brain

Samuel Gershman

Harvard University

# Roadmap

- ▶ The sensory data received by the brain provides incomplete and noisy information about the environment state.

## Roadmap

- ▶ The sensory data received by the brain provides incomplete and noisy information about the environment state.
- ▶ This lecture describes models of how the brain computes a probability distribution over (or point estimate of) hidden states.

## Roadmap

- ▶ The sensory data received by the brain provides incomplete and noisy information about the environment state.
- ▶ This lecture describes models of how the brain computes a probability distribution over (or point estimate of) hidden states.
- ▶ Problem: behavior seems to deviate from Bayes-optimal inference.

## Roadmap

- ▶ The sensory data received by the brain provides incomplete and noisy information about the environment state.
- ▶ This lecture describes models of how the brain computes a probability distribution over (or point estimate of) hidden states.
- ▶ Problem: behavior seems to deviate from Bayes-optimal inference.
- ▶ Can we understand these deviations through the lens of computational and representational constraints on inference?

# Is human behavior Bayesian?

- ▶ Answering this question is trickier than it might seem, because we need to know what (if any) prior, likelihood, posterior, and utility function the brain uses.

# Is human behavior Bayesian?

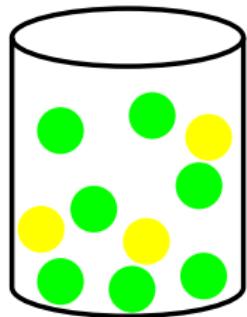
- ▶ Answering this question is trickier than it might seem, because we need to know what (if any) prior, likelihood, posterior, and utility function the brain uses.
- ▶ One approach is to manufacture experimental tasks that tightly control all of these factors and impose them on human subjects.

# Is human behavior Bayesian?

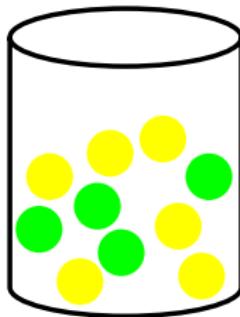
- ▶ Answering this question is trickier than it might seem, because we need to know what (if any) prior, likelihood, posterior, and utility function the brain uses.
- ▶ One approach is to manufacture experimental tasks that tightly control all of these factors and impose them on human subjects.
- ▶ This approach has the advantage of allowing us to precisely answer the question, but it has the disadvantage of being contrived.

# The urn task

Which urn did  come from?



A  
 $p(A) = 0.4$



B  
 $p(B) = 0.6$

## Posterior log odds

We can reduce the binary inference problem to a one-dimensional log odds:

$$\log \frac{p(A|\bullet)}{p(B|\bullet)} = \log \frac{p(\bullet|A)}{p(\bullet|B)} + \log \frac{p(A)}{p(B)},$$

where the first term is the likelihood log odds and the second term is the prior log odds.

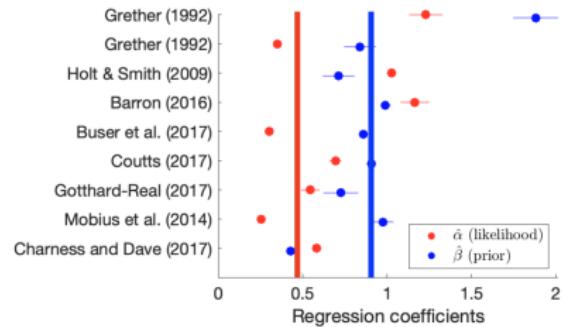
## Generalized log odds

To quantitatively evaluate the Bayesian hypothesis, we can generalize this equation to a more flexible model with coefficients  $\alpha$  and  $\beta$ :

$$y = \alpha \log \frac{p(\bullet|A)}{p(\bullet|B)} + \beta \log \frac{p(A)}{p(B)},$$

where  $y$  is the response generated by human subjects.

## Fitted coefficients



[Zhu & Griffiths 2023]

## Take-aways

- ▶ Both coefficients are systematically below 1 (under-reaction), though the prior coefficient ( $\beta$ ) is pretty close to 1.

## Take-aways

- ▶ Both coefficients are systematically below 1 (under-reaction), though the prior coefficient ( $\beta$ ) is pretty close to 1.
- ▶ Thus, even in this idealized setting, people don't perfectly execute Bayes' rule: Although they update in the correct direction, they systematically under-react to the likelihood (i.e., the urn composition in this case).

## Resource-rational analysis of costly inference

- ▶ Under-reaction suggests that updating from the prior to the (approximate) posterior is costly.

## Resource-rational analysis of costly inference

- ▶ Under-reaction suggests that updating from the prior to the (approximate) posterior is costly.
- ▶ Let's replace the true posterior  $p(s|x)$  with an approximate posterior  $q(s|x)$  to make explicit that we are no longer assuming exact Bayesian inference.

## Resource-rational analysis of costly inference

- ▶ Under-reaction suggests that updating from the prior to the (approximate) posterior is costly.
- ▶ Let's replace the true posterior  $p(s|x)$  with an approximate posterior  $q(s|x)$  to make explicit that we are no longer assuming exact Bayesian inference.
- ▶ Assume the action  $a$  output deterministically by policy  $\pi$  is the approximate posterior:  $a = q$ .

## Resource-rational analysis of costly inference

Cost of updating after observing signal  $x$  using the Kullback-Leibler (KL) divergence:

$$\mathcal{D}[q(s|x) || p(s)] = \sum_s q(s|x) \log \frac{q(s|x)}{p(s)}.$$

Belief updates that move the approximate posterior  $q(s|x)$  farther from the prior  $p(s)$  are more costly.

## Resource-rational analysis of costly inference

Expected cost  $c(\pi)$  under policy  $\pi$ , which averages over signals:

$$c(\pi) = \sum_x p(x) \mathcal{D}[q(s|x) || p(s)].$$

## Resource-rational analysis of costly inference

Utility should be higher when our beliefs are closer to the posterior. Suppose rewards are signals ( $r = x$ ) and that the utility derived from these signals is the negative KL divergence between the approximate and true posterior:

$$u(r) = -\mathcal{D}[q(s|x)||p(s|x)]$$

Expected utility:

$$\bar{u}(\pi) = \mathbb{E}[u(r)|\pi] = - \sum_x p(x) \mathcal{D}[q(s|x)||p(s|x)]$$

# Resource-rational analysis of costly inference

Optimal policy:

$$\pi^* = \operatorname{argmax}_{\pi: c(\pi) \leq \mathcal{C}} \bar{u}(\pi)$$

where  $\mathcal{C}$  is the capacity limit.

# Resource-rational analysis of costly inference

Equivalent unbounded optimization problem (Lagrangian):

$$\pi^* = \operatorname{argmax}_{\pi} \bar{u}(\pi) - \lambda c(\pi)$$

where the Lagrange multiplier is:

$$\lambda = \frac{\partial \bar{u}(\pi^*)}{\partial c(\pi^*)}$$

with  $c(\pi^*) = \mathcal{C}$  (i.e., the optimal policy operates at the capacity limit).

## Resource-rational analysis of costly inference

Closed-form optimal policy [Zhu & Griffiths 2023]:

$$q^*(s|x) \propto p(x|s)^{1/(1+\lambda)} p(s)$$

This is just Bayes' rule with a down-weighted likelihood. This implies under-reaction to the likelihood, as seen experimentally.

## Neural implementation

- ▶ We now construct a neural model that approximates the posterior over  $s \in \{A, B\}$ .

## Neural implementation

- ▶ We now construct a neural model that approximates the posterior over  $s \in \{A, B\}$ .
- ▶ Our basic primitive is the integrate-and-fire neuron (no leak) with membrane potential dynamics governed by:

$$C\dot{\mu} = I(t)$$

where  $C$  is the membrane capacitance, and  
 $I(t) = \sum_d w_d z_d(t)$  is the input current, which linearly  
integrates presynaptic spikes.

## Neural implementation

- ▶ Consider a population of presynaptic neurons, where neuron  $d$  has tuning function  $f_d(s)$ . The log-likelihood under Poisson spiking is given by:

$$\log p(x|s) = \sum_d x_d \log f_d(s) - f_d(s) - \log x_d!$$

where  $x_d$  is the spike count for neuron  $d$  over some time window.

## Neural implementation

- ▶ Consider a population of presynaptic neurons, where neuron  $d$  has tuning function  $f_d(s)$ . The log-likelihood under Poisson spiking is given by:

$$\log p(x|s) = \sum_d x_d \log f_d(s) - f_d(s) - \log x_d!$$

where  $x_d$  is the spike count for neuron  $d$  over some time window.

- ▶ The third term doesn't depend on  $s$ , so we can ignore it. We will also ignore the second term under the assumption that  $\sum_d f_d(s)$  is a constant.

## Neural implementation

- ▶ Consider a population of presynaptic neurons, where neuron  $d$  has tuning function  $f_d(s)$ . The log-likelihood under Poisson spiking is given by:

$$\log p(x|s) = \sum_d x_d \log f_d(s) - f_d(s) - \log x_d!$$

where  $x_d$  is the spike count for neuron  $d$  over some time window.

- ▶ The third term doesn't depend on  $s$ , so we can ignore it. We will also ignore the second term under the assumption that  $\sum_d f_d(s)$  is a constant.
- ▶ After discarding these terms, the log-likelihood ratio becomes:

$$\log \frac{p(x|s = A)}{p(x|s = B)} = \sum_d x_d \log \frac{f_d(A)}{f_d(B)}$$

## Neural implementation

If we set the synaptic strength of neuron  $d$  to be  $w_d = \log \frac{f_d(A)}{f_d(B)}$ , the postsynaptic neuron will accumulate weighted spike counts over time such that its membrane potential represents the posterior log-odds:

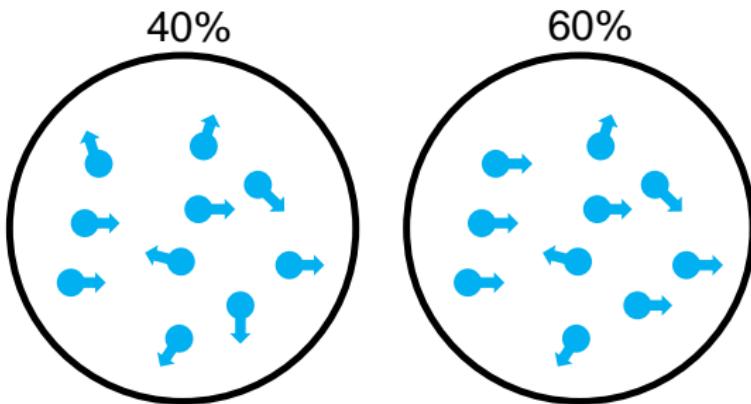
$$\mu(t) = \sum_d x_d w_d = \log \frac{p(s = A|x)}{p(s = B|x)},$$

provided the resting potential is given by the prior log odds:

$$\mu(0) = \log \frac{p(s = A)}{p(s = B)}$$

## Example: motion direction discrimination

Task is to determine the direction of coherently moving dots.



## Example: motion direction discrimination

- ▶ Relevant presynaptic population is in extrastriate area MT, where most neurons are tuned to particular motion directions.

## Example: motion direction discrimination

- ▶ Relevant presynaptic population is in extrastriate area MT, where most neurons are tuned to particular motion directions.
- ▶ Tuning functions can be modeled as a cosine function defined over the space of motion directions ( $s \in [0, 360]$ ):

$$f_d(s) = \exp[\cos(s - s_d^*)/\nu] \quad (1)$$

where  $s_d^*$  is the preferred direction for neuron  $d$  and  $\nu$  is the tuning width.

## Example: motion direction discrimination

- ▶ Relevant presynaptic population is in extrastriate area MT, where most neurons are tuned to particular motion directions.
- ▶ Tuning functions can be modeled as a cosine function defined over the space of motion directions ( $s \in [0, 360]$ ):

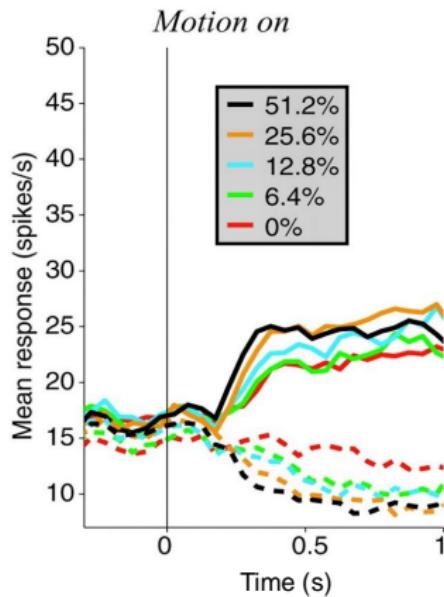
$$f_d(s) = \exp[\cos(s - s_d^*)/\nu] \quad (1)$$

where  $s_d^*$  is the preferred direction for neuron  $d$  and  $\nu$  is the tuning width.

- ▶ One synapse downstream, neurons in parietal area LIP integrate the spiking of MT neurons, enabling them to compute the posterior log odds.

## Example: motion direction discrimination

LIP neurons ramp up over time during viewing of the random dot motion stimulus.



[Shadlen & Gold 2001]

## Another example: discrete evidence accumulation

- ▶ Drawback of the random dot motion stimulus: difficult to precisely quantify the information value of the stimulus at any given time.

## Another example: discrete evidence accumulation

- ▶ Drawback of the random dot motion stimulus: difficult to precisely quantify the information value of the stimulus at any given time.
- ▶ Yang & Shadlen [2007] addressed this issue, recording LIP neurons while monkeys viewed a sequence of abstract shapes.

## Another example: discrete evidence accumulation

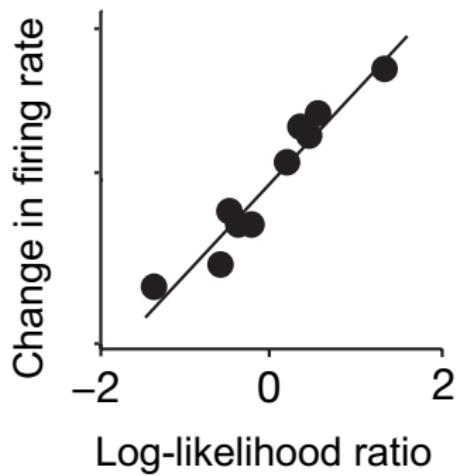
- ▶ Drawback of the random dot motion stimulus: difficult to precisely quantify the information value of the stimulus at any given time.
- ▶ Yang & Shadlen [2007] addressed this issue, recording LIP neurons while monkeys viewed a sequence of abstract shapes.
- ▶ At the end of the sequence, the monkey needed to choose one of two visual targets.

## Another example: discrete evidence accumulation

- ▶ Drawback of the random dot motion stimulus: difficult to precisely quantify the information value of the stimulus at any given time.
- ▶ Yang & Shadlen [2007] addressed this issue, recording LIP neurons while monkeys viewed a sequence of abstract shapes.
- ▶ At the end of the sequence, the monkey needed to choose one of two visual targets.
- ▶ The correct target was determined by the shape sequence: each shape was associated with a particular log-likelihood ratio, such that the total log-likelihood ratio could be obtained by summing up the contributions of the shapes in the sequence.

## Another example: discrete evidence accumulation

Changes in the firing rate of LIP neurons are linearly related to the log-likelihood ratio.



[Yang & Shadlen 2007]

## Incorporating costly inference

- ▶ Cost parameter  $\lambda$  enters through a multiplier of the log-likelihood ratio.

## Incorporating costly inference

- ▶ Cost parameter  $\lambda$  enters through a multiplier of the log-likelihood ratio.
- ▶ This can be interpreted as a global modulation:

$$\log \frac{p(x|s = A)^{1/(1+\lambda)}}{p(x|s = B)^{1/(1+\lambda)}} = \frac{1}{1+\lambda} \sum_d x_d \log \frac{f_d(A)}{f_d(B)}.$$

## Incorporating costly inference

- ▶ Cost parameter  $\lambda$  enters through a multiplier of the log-likelihood ratio.
- ▶ This can be interpreted as a global modulation:

$$\log \frac{p(x|s = A)^{1/(1+\lambda)}}{p(x|s = B)^{1/(1+\lambda)}} = \frac{1}{1+\lambda} \sum_d x_d \log \frac{f_d(A)}{f_d(B)}.$$

- ▶ As  $\lambda$  increases (lower capacity  $C$ ), the log-likelihood is suppressed.

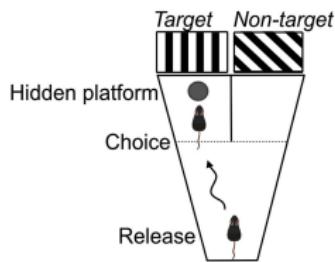
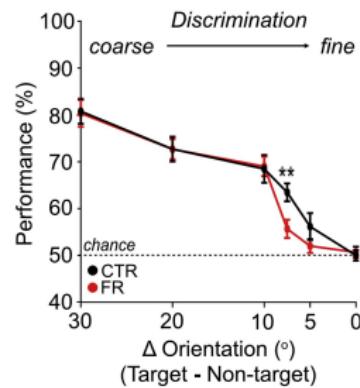
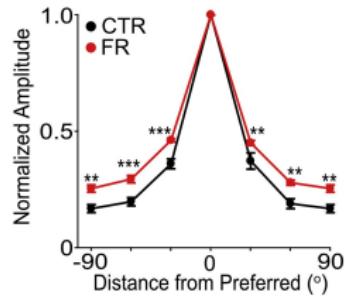
## Incorporating costly inference

- ▶ Cost parameter  $\lambda$  enters through a multiplier of the log-likelihood ratio.
- ▶ This can be interpreted as a global modulation:

$$\log \frac{p(x|s = A)^{1/(1+\lambda)}}{p(x|s = B)^{1/(1+\lambda)}} = \frac{1}{1+\lambda} \sum_d x_d \log \frac{f_d(A)}{f_d(B)}.$$

- ▶ As  $\lambda$  increases (lower capacity  $C$ ), the log-likelihood is suppressed.
- ▶ Possible mechanistic interpretations: suppression of firing, suppression of synaptic strengths, or suppression of the postsynaptic membrane potential.

# Case study: effects of food restriction on orientation discrimination



[Padamsey et al 2022]

## Case study: effects of food restriction on orientation discrimination

- ▶ Plug cosine tuning functions into the costly inference model:

$$\log \frac{p(x|s = A)^{1/(1+\lambda)}}{p(x|s = B)^{1/(1+\lambda)}} = \frac{1}{\nu(1 + \lambda)} \sum_d x_d \log \frac{\cos(A - s_d^*)}{\cos(B - s_d^*)},$$

where  $A$  and  $B$  are different frequencies.

## Case study: effects of food restriction on orientation discrimination

- ▶ Plug cosine tuning functions into the costly inference model:

$$\log \frac{p(x|s = A)^{1/(1+\lambda)}}{p(x|s = B)^{1/(1+\lambda)}} = \frac{1}{\nu(1 + \lambda)} \sum_d x_d \log \frac{\cos(A - s_d^*)}{\cos(B - s_d^*)},$$

where  $A$  and  $B$  are different frequencies.

- ▶ This equation makes clear how  $\lambda$  can be interpreted as scaling the tuning width  $\nu$ .

## Case study: effects of food restriction on orientation discrimination

- ▶ The mechanism underlying the tuning change was a reduction in AMPA receptor conductance, which was compensated for by increased input resistance and depolarization of the membrane potential.

## Case study: effects of food restriction on orientation discrimination

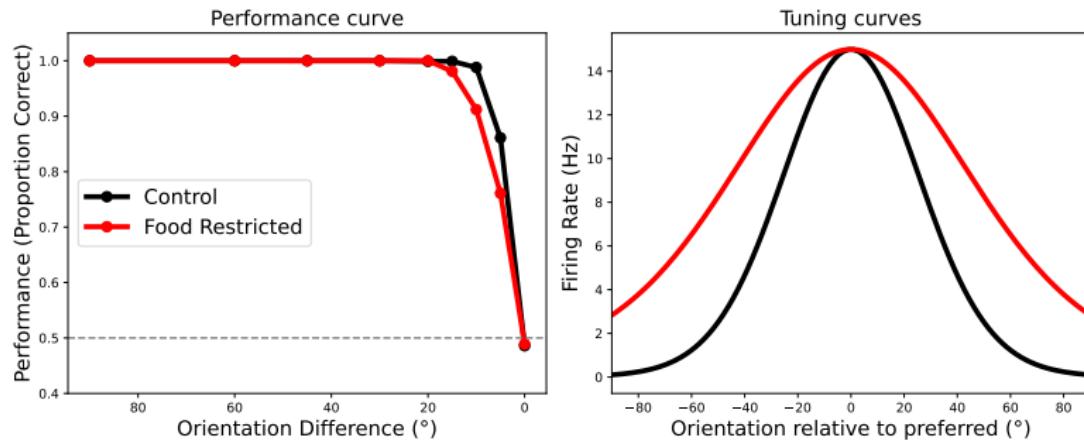
- ▶ The mechanism underlying the tuning change was a reduction in AMPA receptor conductance, which was compensated for by increased input resistance and depolarization of the membrane potential.
- ▶ This had the effect of maintaining roughly the same firing rates but making firing more variable.

## Case study: effects of food restriction on orientation discrimination

- ▶ The mechanism underlying the tuning change was a reduction in AMPA receptor conductance, which was compensated for by increased input resistance and depolarization of the membrane potential.
- ▶ This had the effect of maintaining roughly the same firing rates but making firing more variable.
- ▶ The broader orientation tuning essentially reflects this higher variability (i.e., a higher probability of randomly responding to stimuli farther away from a neuron's preferred stimulus).

# Case study: effects of food restriction on orientation discrimination

Simulation of the costly inference model:



## Study question

How would you modify the random dot motion discrimination task to directly test predictions of the resource-rational inference model?

# Magnitude estimation

Some examples:

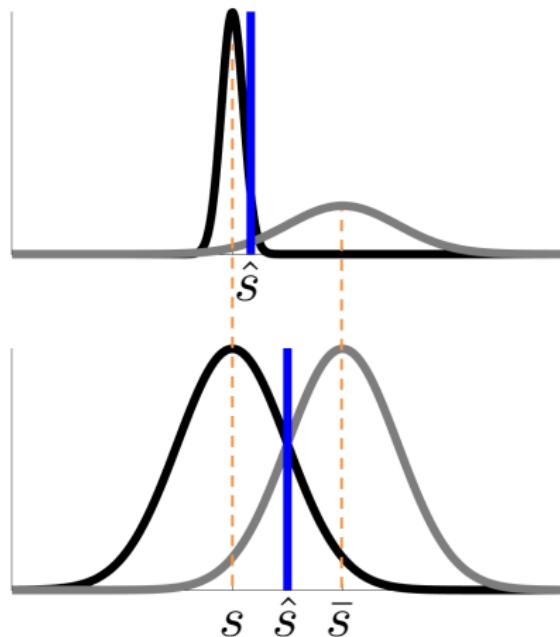
- ▶ How far?
- ▶ How big?
- ▶ How long?
- ▶ How many?

# Magnitude estimation

Some examples:

- ▶ How far?
- ▶ How big?
- ▶ How long?
- ▶ How many?

## Gaussian magnitude estimation



Gray curve: prior,  $p(s|\bar{s})$ . Black curve: signal distribution,  $p(x|s)$ .  
Blue line: posterior mean  $\hat{s}$ .

# Gaussian magnitude estimation

Signal-generating process:

$$x \sim \mathcal{N}(s, \sigma_x^2), \quad s \sim \mathcal{N}(\bar{s}, \sigma_s^2).$$

The posterior mean (also the posterior mode) is a convex combination of the signal  $x$  and the prior mean  $\bar{s}$ :

$$\hat{s} = wx + (1 - w)\bar{s},$$

where  $w = \frac{\sigma_s^2}{\sigma_x^2 + \sigma_s^2}$  is the signal sensitivity.

## Central tendency effect

The bias for Gaussian magnitude estimation is given by:

$$\mathbb{E}[\hat{s} - s|s] = (1 - w)(\bar{s} - s).$$

The prior mean attracts the posterior mean (bias always pushes  $\hat{s}$  towards  $\bar{s}$ ), and the strength of this attraction is inversely proportional to the signal sensitivity  $w$ . Many studies show such a central tendency effect.

## Moderators of central tendency

- ▶ Central tendency should be stronger when the signal variance is large relative to the prior variance.

## Moderators of central tendency

- ▶ Central tendency should be stronger when the signal variance is large relative to the prior variance.
- ▶ Signal variance tends to increase with magnitude, possibly due to a nonlinear transformation from objective to subjective magnitude (more on this later).

## Moderators of central tendency

- ▶ Central tendency should be stronger when the signal variance is large relative to the prior variance.
- ▶ Signal variance tends to increase with magnitude, possibly due to a nonlinear transformation from objective to subjective magnitude (more on this later).
- ▶ Consistent with this prediction, central tendency is stronger for larger magnitudes, and shorter stimulus durations [Xiang et al 2021].

# Repulsion

- ▶ Sometimes human judgments are *repulsed* from the prior mean—an apparently “anti-Bayesian” bias.

# Repulsion

- ▶ Sometimes human judgments are *repulsed* from the prior mean—an apparently “anti-Bayesian” bias.
- ▶ For example, people judge a smaller object to be heavier than a larger object with the same mass, the *size-weight illusion*.

# Repulsion

- ▶ Sometimes human judgments are *repulsed* from the prior mean—an apparently “anti-Bayesian” bias.
- ▶ For example, people judge a smaller object to be heavier than a larger object with the same mass, the *size-weight illusion*.
- ▶ This seems to defy the prior that larger objects tend to be more massive.

## Formalizing attraction/repulsion

- ▶ Bias is attractive when pointing towards the prior mode, repulsive when pointing away from the prior mode.

## Formalizing attraction/repulsion

- ▶ Bias is attractive when pointing towards the prior mode, repulsive when pointing away from the prior mode.
- ▶ Let  $p'(s)$  denote the derivative of the prior  $p(s)$ . Then repulsion when  $\mathbb{E}[\hat{s} - s|s]p'(s) < 0$ .

## Formalizing attraction/repulsion

- ▶ The direction bias can be approximated [Hahn & Wei 2024]:

$$\mathbb{E}[\hat{s} - s|s]p'(s) \approx \frac{1}{J(s)} \left[ \frac{p'(s)^2}{p(s)} - \frac{J'(s)p'(s)}{J(s)} \right]$$

where  $J(s)$  is the Fisher information (measure of coding precision).

## Formalizing attraction/repulsion

- ▶ The direction bias can be approximated [Hahn & Wei 2024]:

$$\mathbb{E}[\hat{s} - s|s]p'(s) \approx \frac{1}{J(s)} \left[ \frac{p'(s)^2}{p(s)} - \frac{J'(s)p'(s)}{J(s)} \right]$$

where  $J(s)$  is the Fisher information (measure of coding precision).

- ▶ Repulsion will occur when  $J'(s)$  and  $p'(s)$  have the same sign and their product is large enough to outweigh the first term.

## Formalizing attraction/repulsion

- ▶ The direction bias can be approximated [Hahn & Wei 2024]:

$$\mathbb{E}[\hat{s} - s|s]p'(s) \approx \frac{1}{J(s)} \left[ \frac{p'(s)^2}{p(s)} - \frac{J'(s)p'(s)}{J(s)} \right]$$

where  $J(s)$  is the Fisher information (measure of coding precision).

- ▶ Repulsion will occur when  $J'(s)$  and  $p'(s)$  have the same sign and their product is large enough to outweigh the first term.
- ▶ Consistent with Bayes' rule!

## Diminishing sensitivity

- ▶ Many psychophysical studies show diminishing sensitivity for larger magnitudes. Neurally this corresponds to decreasing coding precision,  $J'(s) < 0$ .

## Diminishing sensitivity

- ▶ Many psychophysical studies show diminishing sensitivity for larger magnitudes. Neurally this corresponds to decreasing coding precision,  $J'(s) < 0$ .
- ▶ This implies that repulsion should tend to occur when  $p'(s) < 0$ .

## Diminishing sensitivity

- ▶ Many psychophysical studies show diminishing sensitivity for larger magnitudes. Neurally this corresponds to decreasing coding precision,  $J'(s) < 0$ .
- ▶ This implies that repulsion should tend to occur when  $p'(s) < 0$ .
- ▶ Many natural magnitudes have this property. For example, the distribution of spatial frequencies in natural images falls off according to a power law:  $p(s) \propto s^{-\alpha}$  with  $\alpha$  between 1 and 2.

## Diminishing sensitivity

- ▶ Many psychophysical studies show diminishing sensitivity for larger magnitudes. Neurally this corresponds to decreasing coding precision,  $J'(s) < 0$ .

## Diminishing sensitivity

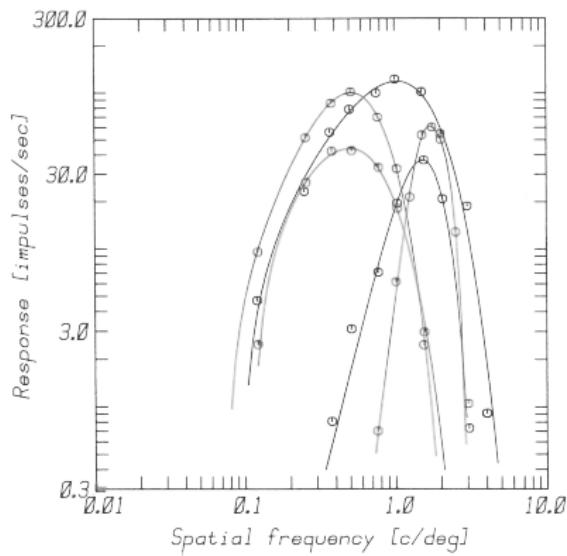
- ▶ Many psychophysical studies show diminishing sensitivity for larger magnitudes. Neurally this corresponds to decreasing coding precision,  $J'(s) < 0$ .
- ▶ This implies that repulsion should tend to occur when  $p'(s) < 0$ .

## Diminishing sensitivity

- ▶ Many psychophysical studies show diminishing sensitivity for larger magnitudes. Neurally this corresponds to decreasing coding precision,  $J'(s) < 0$ .
- ▶ This implies that repulsion should tend to occur when  $p'(s) < 0$ .
- ▶ Many natural magnitudes have this property. For example, the distribution of spatial frequencies in natural images falls off according to a power law:  $p(s) \propto s^{-\alpha}$  with  $\alpha$  between 1 and 2.

# Neural correlate of diminishing sensitivity

Spatial frequency tuning in V1 can be modeled using Gaussian tuning functions defined over log-transformed frequency.



[Movshon, unpublished]

## Neural correlate of diminishing sensitivity

- ▶ If we assume Poisson spiking and a uniform density of preferred stimuli in log space, we get (in the limit of a large population):

$$J(s) \propto \frac{1}{s^2}$$

## Neural correlate of diminishing sensitivity

- ▶ If we assume Poisson spiking and a uniform density of preferred stimuli in log space, we get (in the limit of a large population):

$$J(s) \propto \frac{1}{s^2}$$

- ▶ Thus, diminishing sensitivity,  $J'(s) < 0$ , can be derived from an approximation of the empirical tuning functions.

## Neural correlate of diminishing sensitivity

- ▶ If we assume Poisson spiking and a uniform density of preferred stimuli in log space, we get (in the limit of a large population):

$$J(s) \propto \frac{1}{s^2}$$

- ▶ Thus, diminishing sensitivity,  $J'(s) < 0$ , can be derived from an approximation of the empirical tuning functions.
- ▶ This satisfies the assumptions underlying our analysis of repulsion.

# Summary

- ▶ We started with the normative ideal of Bayesian inference, and then tried to explain both the successes and failures of this ideal as a model of inference in the brain.

# Summary

- ▶ We started with the normative ideal of Bayesian inference, and then tried to explain both the successes and failures of this ideal as a model of inference in the brain.
- ▶ The key idea is that computational and representational constraints shape inference in ways that comport with empirical observations.

# Summary

- ▶ We started with the normative ideal of Bayesian inference, and then tried to explain both the successes and failures of this ideal as a model of inference in the brain.
- ▶ The key idea is that computational and representational constraints shape inference in ways that comport with empirical observations.
- ▶ We also saw how these constraints can be realized in simple neural networks.

## Study question

In what ways might resource-rational inference vary systematically across individuals (e.g., children, older adults, clinical populations)? How would you test this empirically?