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» If neural computation is the manipulation of representations,
what are those representations?

» Focusing on perception, we can organize principles of
representation into a small set of general principles (efficiency,
sparsity, prediction), formulated as different optimization
problems.
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> Key idea: neural representations are optimized to
communicate information, subject to a set of resource
constraints.

» Constraints: max firing rate, discrete levels (due to spikes),
noise.

» These constraints mean that a neuron has an upper bound on
how much information it can communicate about its inputs.
The efficient coding principle states that the neuron should be
configured to operate at this upper bound.
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Single

neuron as a communication channel

Receives inputs ( “messages”) about the state (s) that it
communicates to downstream neurons via its firing rate x (the
channel output).

Firing rates can distinguish M different input levels.

With M levels, a neuron can communicate up to log M bits
per sample. This upper bound is achieved when each firing
rate is used with equal frequency across the distribution of
inputs.



Quantifying uncertainty

» A neuron’s activity x is informative to the extent that it allows
downstream neurons to reduce their uncertainty about the
state s.



Quantifying uncertainty

» A neuron’s activity x is informative to the extent that it allows
downstream neurons to reduce their uncertainty about the
state s.

» The “surprisal” of observing s (measured in bits) is defined as
—log p(s).
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» A neuron’s activity x is informative to the extent that it allows
downstream neurons to reduce their uncertainty about the

state s.

» The “surprisal” of observing s (measured in bits) is defined as
—log p(s).

» Uncertainty can be quantified as the average surprisal, or
entropy:

H[s] = E[- log p(s Zp )log p(s



Quantifying uncertainty

Uncertainty about s after observing neural activity x is the
conditional entropy:

H[s|x] = E[— log p(s|x)] Zp X)Zp s) log p(s|x)



Information

The uncertainty reduction afforded by observing x is the difference
between these two entropies, the mutual information:

I[s; x] = H[s] — H[s|x] = H[x] — H[x]s]

(note the symmetry)



Information
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Information

» 7 [x] measures the variability of firing rates across the
distribution of inputs.

» H[x|s] measures transmission noise. If we assume that
transmission noise is negligible, then H[x|s] ~ 0.
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Maximizing information

» When H|[x|s] &~ 0, maximizing information corresponds to
maximizing output entropy H|[x].

» This is achieved when the output response distribution p(x) is
uniform, which can be implemented by setting the tuning
function to be the cumulative distribution function of the
stimulus distribution p(s):

£(s) o P(s) = / p(s')ds'.
s'<s
» This tuning curve is a rank transformation, where the firing
rate for a stimulus corresponds to its normalized rank in the
stimulus distribution = high sensitivity to changes in regions
where rank changes quickly.



Brightness contrast statistics
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The distribution of brightness contrast in a natural image and the
cumulative distribution function.




Efficient coding in the blowfly eye

Normalized responses of large monopolar cells at different contrast
levels. The line shows the cumulative distribution function of
contrast estimated from images of the fly's natural environment.
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Brightness illusions

Same stimulus maps onto different firing rates depending on the
stimulus distribution, such that a brightness difference is perceived
where there is no objective difference.
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Predictive coding

» The rank transformation removes information about the mean
(stimulus expectation), encoding only deviations (prediction
errors).

» This strategy supports metabolic efficiency: only generate
spikes in response to incompressible surprises.



Study question

Representations are conceptualized here in terms of tuning
functions. What are the limitations of this conceptualization when
compared with a more dynamical view of neural computation?
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Efficient coding with a convolutional population

» Idealized population of neurons with identical, uniformly
spaced tuning functions; each idealized tuning function is a
shifted copy of a “prototype” tuning function f.

D fa(s—sa) ~ 1
d

where {s4} is a set of evenly spaced points in stimulus space
(the stimulus lattice).

» Tiling property:

» The optimal tuning function warps the preferred stimuli to
maximize an approximation of the mutual information, the
Fisher information J(s), subject to an upper bound G on the
population firing rate:

f* = argmaxE[log J(s)|f]
f
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Fisher information

» Fisher information is defined as:

Z p(x|s) [ log p(X\S)] 2

where x is the spike count vector for the population.

» Can be interpreted as an approximation of the mutual
information, but more tractable to analyze.

» For independent Poisson neurons:

NS0
o) = ; fa(s)




Optimal tuning

» Parametrized tuning function:

fa(s) = g(s3)f(T(s) — sq)

with gain g(s), warping function I'(s), and preferred stimulus
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density () controlling resource allocation across neurons.



Optimal tuning

» Parametrized tuning function:

fa(s) = g(s3)f(T(s) — sq)

with gain g(s), warping function I'(s), and preferred stimulus
(after warping) s% = [(s4), where ['(s) is the CDF of
density () controlling resource allocation across neurons.

» Optimal solution:

v(s) x p(s),  g(s)x G



Optimal tuning
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preferred stimuli should match the prior distribution: optimal
preferred stimuli correspond to samples from p(s).



Optimal tuning

» Under the Ganguli & Simoncelli model, the distribution of
preferred stimuli should match the prior distribution: optimal
preferred stimuli correspond to samples from p(s).

» This is because the optimal warping function is the CDF of
the stimulus distribution, and the preferred stimuli are
obtained by taking the inverse CDF evaluated at each
stimulus on the stimulus lattice.



Optimal tuning

Distribution of orientations in natural scenes, and the distribution

of preferred orientations in V1.

Probability
# Cells
w3
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Orientation

[Ganguli & Simoncelli 2010]
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Fisher information: the fundamental unit of analysis

» Under efficient coding [Wei & Stocker 2015]:

J(s) o p(s)?

» Thus, we can formalize the efficient coding principle without
making specific claims about tuning functions. It provides a
powerful abstraction that we will discuss more in the next
lecture.
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Sparsity

» Only a small proportion of neurons are active at any given
time.

» For example, on average 2.5% of V1 neurons are active for
each natural image [Yoshida et al, 2020]. Of these responsive
neurons, only 5.4% of them exhibited overlap between pairs of
images.
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Sparsity

» Sensory data arise from many different causes, only a few of
which are present at any given moment.

> If your eyes scan a scene, the high-dimensional time series of
retinal images arises from different glimpses of a slowly
changing object set. The retinal images live on a
low-dimensional subspace defined by the set of currently
active causes (objects).

» Perceptual inference: which causes are active at any given
moment? Perceptual learning: what is the stable mapping
between causes and images?



Visual receptive fields from sparse coding

Learned receptive fields
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The metabolic argument for sparsity

>

>

>

Two major contributors to energy consumption: spiking and
synaptic transmission.

A single spike in human cortex costs 2.4 x 10° molecules of
ATP [Lennie 2003].

Cortical neurons need to spike on average less than once per
second in order to satisfy the energy budget. This is
remarkably low given the fact that studies have reported spike
rates of up to 100 Hz.



Stimulus responses in auditory cortex

Neurons typically spike close to 1 Hz, but can infrequently achieve
much higher spike rates.
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The metabolic argument for sparsity

» For a “strong” response to a stimulus (spike rate of 10 Hz
over 200 ms), the energy budget could support concurrent
spiking in 0.3% of neurons.

» Even allowing for large transient increases in glucose
consumption during intense sensory stimulation, the average
spike rate can only increase by a few spikes per second = 4%
of concurrently active neurons spiking at 50 Hz.

» Takeaway: metabolic constraints necessitate sparsity of
neural activity.



Study question

The energy efficiency of the brain is remarkable (its power usage is
comparable to a dim light bulb). What might we learn about the
design of energy-efficient artificial systems from studying the brain?
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Representations optimized for prediction

» The future can, at least partially, be predicted from the past.
» This predictability can be exploited by perceptual systems.
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Anticipatory saccades

» Our high-acuity (foveal) vision is limited to a small portion of
the visual field (approximately twice the width of your
thumbnail held at arm’s length).

> We perceive much more than the central 2 degrees because
our eyes are making frequent saccades—ballistic, high-velocity
movements to salient regions of the visual field.

» Saccades to unpredictable stimuli usually take around 200 ms.
In contrast, saccades to predictable stimuli can be initiated
even before the stimulus appears.

» This is useful in a fast-changing but predictable world, where
predictive saccades can increase the rate of information flow.
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Covert attention

> Even without eye movements, prediction can improve
perception.

» A centrally presented cue, indicating the likely future location
of a target, speeds detection of the target when it appears in
the cued location, and slows down detection when it appears
unexpectedly in an uncued location [Posner 1980].
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future stimuli that haven't been observed yet.



The predictive information bottleneck principle

> Let s,ast denote the history of stimuli, and sgyre denote
future stimuli that haven't been observed yet.

» A population of neurons encodes the stimulus history into its
spiking activity x. If this population carries predictive
information, it should be able to predict the future trajectory
of the stimulus over some timescale.



The prediction problem
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The predictive information bottleneck solution

» An optimal predictive representation x = f*(spast) should
maximize predictability of the future subject to a constraint
on memory of the past [Bialek et al, 2001]:

f* = argmaxZ[x; Stuture), subject to Z[spast; x] < C.
f



The predictive information bottleneck solution

» An optimal predictive representation x = f*(spast) should
maximize predictability of the future subject to a constraint
on memory of the past [Bialek et al, 2001]:

f* = argmaxZ[x; Stuture), subject to Z[spast; x] < C.
f

» For different choices of the capacity parameter C, we can
chart an optimality frontier. This tells us the highest
achievable predictive information for a given constraint on
memory capacity.



The predictive information bottleneck solution

Blue curve: optimality frontier. The dashed line shows a
hypothetical capacity parameter.
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Predictive information in the retina

» The retina is one of the earliest stages of vision in which
signatures of prediction are present.

> A moving bar evokes a wave of activation in retinal ganglion
cells that tracks the leading edge of the bar [Berry et al, 1999].

» This is remarkable given that firing latency of retinal ganglion
cells to unpredictable flashes is around 50 ms. The population
apparently learns to compensate for this delay by anticipating
the bar position.



Predictive information in the retina

Color denote groups of cells of different sizes (N). Black line:
optimality frontier.
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Predictiveness vs. efficiency

» Although both the predictive information bottleneck and
predictive coding solutions involve predictions, what they do
with these predictions is quite different.

» In the predictive information bottleneck, only the predictively
useful information is kept.

» In contrast, predictive coding discards predictive information
by only encoding prediction errors. Since sparse coding can
arise from efficient coding, predictiveness may also sometimes
be at odds with sparsity.

> Note, however, that predictions still need to be retained in
some form (not necessarily spiking activity) in order to
compute prediction errors.



Study question

Efficiency, sparsity, and prediction principles are partly
complementary but sometimes contradictory. How might these
principles be reconciled into a single unifying framework of
perceptual representation? To what extent are they incompatible?
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» While no single principle can explain all the relevant empirical
phenomena, a small set of principles has a remarkably wide
scope.



Summary

» While no single principle can explain all the relevant empirical
phenomena, a small set of principles has a remarkably wide
scope.

» Unifying idea: representations should be optimized to encode
information that is useful for certain tasks (reconstruction,
inference, prediction).



