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▶ We’ll develop simple formalizations that capture key aspects
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The leaky integrate-and-fire neuron

▶ The leaky integrate-and-fire (LIF) model formalizes the
postsynaptic membrane as a resistor-capacitor circuit that can
be charged up by input current (with some leak) and then
discharged when a spike occurs.

▶ The membrane potential µ(t) obeys the following dynamics:

C µ̇ =
µ0 − µ(t)

R
+ I (t),

where I (t) is the input current at time t, µ(t) is the
membrane potential, µ̇ is its temporal derivative, µ0 is the
resting potential, R is the membrane resistance, and C is the
membrane capacitance.

▶ Linear integration: I (t) =
∑

d wdzd(t), where zd(t) is the
spike train of presynaptic neuron d , and wd is the synaptic
strength.
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The leaky integrate-and-fire neuron

▶ Membrane resistance (R): determined by the number of open
ion channels.

▶ Membrane capacitance (C ): determined by the surface area of
the membrane.

▶ Sometimes we will refer to τ = RC , the membrane time
constant (how quickly the membrane responds to a change in
input current).
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▶ When µ(t) crosses a threshold θ, a spike is emitted and the
membrane potential is reset to µreset < µ0.

▶ Brief post-spike refractory period during which spiking is
suppressed.
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Leaky integrate-and-fire dynamics with step input



Noise

▶ Highly regular spiking when cells are recorded in a slice
preparation, where the inputs can be precisely controlled
[Mainen & Sejnowski, 1995].

▶ Highly irregular spiking when cells are recorded in vivo (i.e., by
inserting electrodes into the intact brain), following either
current injection or the presentation of a stimulus.

▶ Hypothesis: irregularity arises from “random” synaptic
background activity from other inputs, which is present in vivo
but absent in the slice preparation.



Noise

▶ Highly regular spiking when cells are recorded in a slice
preparation, where the inputs can be precisely controlled
[Mainen & Sejnowski, 1995].

▶ Highly irregular spiking when cells are recorded in vivo (i.e., by
inserting electrodes into the intact brain), following either
current injection or the presentation of a stimulus.

▶ Hypothesis: irregularity arises from “random” synaptic
background activity from other inputs, which is present in vivo
but absent in the slice preparation.



Noise

▶ Highly regular spiking when cells are recorded in a slice
preparation, where the inputs can be precisely controlled
[Mainen & Sejnowski, 1995].

▶ Highly irregular spiking when cells are recorded in vivo (i.e., by
inserting electrodes into the intact brain), following either
current injection or the presentation of a stimulus.

▶ Hypothesis: irregularity arises from “random” synaptic
background activity from other inputs, which is present in vivo
but absent in the slice preparation.



Voltage traces of neurons recorded in visual cortex

[Holt et al. 1996]



Noisy LIF model

▶ Adding membrane potential noise ϵ(t):

C µ̇ =
µ0 − µ(t)

R
+ I (t) + ϵ(t).

▶ If the noise reflects the summation of many independent
excitatory and inhibitory currents, then the Central Limit
Theorem implies that the noise should be approximately
Gaussian: ϵ(t) ∼ N (0, σ2).
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LIF neuron with step input and membrane potential noise



The linear-nonlinear Poisson (LNP) model

▶ The LNP model is a statistical abstraction which captures
important aspects of real neurons despite sacrificing the
mechanistic description of spiking generation. It’s sometimes
easier to work with than the LIF model.

▶ To derive the model, we first transform the LIF model into a
temporal point process, a collection of random variables
(spikes in this case) with probabilities specified as a function
of time.

▶ We then use the point process to express a static model over
an integration window.
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The linear-nonlinear Poisson (LNP) model

▶ The expected firing rate at time t (the intensity function)
under the LIF can be approximated by:

ρ(t) ∝ exp

(
− [µ̄(t)− θ]2

σ2

)
where µ̄(t) = E[µ(t)] is the expected membrane potential at
time, and σ2 is its steady-state variance.

▶ If we assume that the number of spikes within any interval
[t, t +∆] is Poisson-distributed with rate

∫ t+∆
t ρ(t ′)dt ′, and

that the number of spikes is independent across disjoint
intervals, then we arrive at the inhomogeneous Poisson
process with intensity function ρ(t).

▶ “Linear” refers to linear synaptic integration. “Nonlinear”
refers to the nonlinear mapping from expected membrane
potential to the intensity function.
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Poisson spiking statistics

Poisson spiking is widely assumed by models. It exhibits two
distinctive properties that are similar to real neurons:

▶ The ratio between the variance and the mean of the spike
count (also known as the Fano factor) is close to 1 [Tolhurst
et al 1983], although this relationship tends to break down for
high spike counts.

▶ The interspike interval is approximately exponentially
distributed. Note, however, that the refractory period
following spikes implies that the very short interspike intervals
are not possible; because it is peaked at 0, the exponential
distribution always overestimates the frequencies of these
short intervals.
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Poisson spiking statistics

[Shadlen & Newsome 1998]



Spikes vs. rates

Two theoretical perspectives on the neural code (i.e., how neurons
encode information):

▶ Rate code: precise spike timing is discarded—only firing rates
matter.

▶ Spike timing code: individual spike times matter beyond rates.



Evidence for a spike timing code

▶ As discussed, spike timing can be highly reproducible under
certain conditions—a necessary precondition for using spike
timing to communicate information reliably.

▶ Discarding spike timing information from neural data reduces
the performance of an optimal stimulus decoder p(s|x) to
levels well below animal behavioral performance, whereas a
model that incorporates spike timing is able to match animal
performance [Jacobs et a. 2009; Mackevicius et al. 2012; Zuo
et al. 2015]
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Decoders

▶ A stimulus decoder is a distribution p(s|x), where s is the
stimulus and x is some measure of neural activity. An optimal
decoder uses Bayes’ rule to obtain p(s|x).

▶ Showing that we can decode stimulus information from neural
activity means that the information must be represented by
those neurons.

▶ The decoder can also be viewed as a model of neural
computation: some downstream neurons can be
conceptualized as decoding information from upstream
neurons.



Decoders

▶ A stimulus decoder is a distribution p(s|x), where s is the
stimulus and x is some measure of neural activity. An optimal
decoder uses Bayes’ rule to obtain p(s|x).

▶ Showing that we can decode stimulus information from neural
activity means that the information must be represented by
those neurons.

▶ The decoder can also be viewed as a model of neural
computation: some downstream neurons can be
conceptualized as decoding information from upstream
neurons.



Decoders

▶ A stimulus decoder is a distribution p(s|x), where s is the
stimulus and x is some measure of neural activity. An optimal
decoder uses Bayes’ rule to obtain p(s|x).

▶ Showing that we can decode stimulus information from neural
activity means that the information must be represented by
those neurons.

▶ The decoder can also be viewed as a model of neural
computation: some downstream neurons can be
conceptualized as decoding information from upstream
neurons.



Decoders

▶ If a neuroscientist’s decoder matches behavioral performance,
it means that it is doing approximately as well as the brain’s
decoder.

▶ This provides us with a recipe for reverse engineering what
information is being used by the brain’s decoder.

▶ The studies cited above show that using spike timing yields a
better match to behavior than firing rate, suggesting that
spike timing is used by the brain’s decoder.



Decoders

▶ If a neuroscientist’s decoder matches behavioral performance,
it means that it is doing approximately as well as the brain’s
decoder.

▶ This provides us with a recipe for reverse engineering what
information is being used by the brain’s decoder.

▶ The studies cited above show that using spike timing yields a
better match to behavior than firing rate, suggesting that
spike timing is used by the brain’s decoder.



Decoders

▶ If a neuroscientist’s decoder matches behavioral performance,
it means that it is doing approximately as well as the brain’s
decoder.

▶ This provides us with a recipe for reverse engineering what
information is being used by the brain’s decoder.

▶ The studies cited above show that using spike timing yields a
better match to behavior than firing rate, suggesting that
spike timing is used by the brain’s decoder.



Limits of spike timing

▶ The best data for the behavioral relevance of spike timing
comes from early sensory processing, before timing information
has been erased over multiple synaptic transmissions.

▶ By the time signals reach higher-level cortex, firing rate may
be the only reliable source of information.

▶ Away from the sensory periphery, firing rates can be good
predictors of behavior, even at the single-trial level.
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Integration vs. coincidence detection

▶ Integration when time constant is long; coincidence detection
when the time constant is short.

▶ Integration mode discards spike timing information, whereas
coincidence detection mode relies on precisely-timed
presynaptic spikes in order to produce a postsynaptic spike
(multiple presynaptic spikes need to arrive near-simultaneously
in order to push the membrane potential above threshold).
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The fluctuation-driven regime

▶ When excitation and inhibition of a neuron are approximately
balanced (as observed in cortex), the membrane potential
approaches a random walk, moving stochastically up or down
until the threshold is reached.

▶ A short membrane time constant would be disastrous in this
regime: spikes would essentially be propagating noise. Need
long time constants to average out the noise.

▶ This implies that precise spike timing is implausible in the
fluctuation-driven regime.
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Study question

What are the computational advantages and disadvantages of
using spike times vs. firing rates?



Tuning functions

▶ In many neuroscience experiments, an animal is presented
with a stimulus (e.g., an image, sound, etc.) while the firing
rates of neurons are measured.

▶ This allows the experimenter to plot the average firing rate as
a function of some stimulus parameter—a tuning function (or
receptive field).

▶ When the stimulus parameter is one-dimensional, this is called
a tuning curve. Example orientation tuning curve:

the identity of the stimulus is determined by the cell or group of cells
that fired the first n spikes with respect to the reference signal. This
may come at the expense of the time it takes to make a decision.
However, if the number of spikes, n, is less than or equal to the group
size, N, then the mean decision time of the n-tWTA will be less than
the mean first spike time of a single cell, keeping the mechanism fast.

Discrimination accuracy based on single cell responses
As a first test of the tWTA accuracy we quantified how well it

can discriminate between two orientations based on single cell
responses. We consider the case where one of the orientations is
the cell’s preferred orientation h0 (as defined by its latency tuning
curve) and the other orientation is h0+Dh. The tWTA decision rule

Figure 2. Additional examples of spike latency tuning. Each column, (A)–(C), corresponds to data from a different unit. First row: Raster plot
for each of the 8 orientations. For each orientation, 100 randomly chosen trials are shown for 120 ms after stimulus onset. Second row: PSTH (Post
Stimulus Time Histogram) for the same time window. Third row: Tuning curve of first spike latency. Cosine fit is shown as a solid line. Fourth row: Rate
tuning curve (black circles) and a fitted von-Mises function (solid line). The cell in (A) is taken from dataset 1 in Table 1, in which stimulus duration was
400 ms and the number of trials was 400. The cells in (B) and (C) are taken from dataset 5 in Table 1, in which stimulus duration was 300 ms and the
number of trials was 300. These are the same 3 cells as in Figure 5.
doi:10.1371/journal.pcbi.1002536.g002
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Tuning functions

▶ The stimulus parameter is a state variable (the cause of
sensory input). We will use the notation fd(s) to denote the
average firing rate of neuron d in response to state s.

▶ The tuning curve is a useful abstraction because it tells us
something about how the brain encodes state information.

▶ It is not a mechanistic description of the causal events that go
from the state to the firing rate of a neuron. One of our goals
will be to explain how particular tuning functions arise, both
mechanistically and in terms of general design principles.
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Tuning functions

▶ The tuning of single neurons can be highly misleading about
the nature of neural computation.

▶ Populations of neurons do much of the computational work in
the brain; the relevant information is often distributed in
complex ways across many neurons.

▶ In other words, tuning functions are generally meaningful only
in the context of the roles they play within a population.
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Universality

▶ By asserting that these simple neuron models function as
neural primitives of thought, we are making a promise that
they can be used to construct computational systems capable
of complex cognition.

▶ What is the class of computational systems that we can
construct with these neural primitives?
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Logical universality

▶ McCulloch & Pitts [1943] famously proposed a model in
which spikes signal the truth value of a proposition
represented by the neuron.

▶ At each time step, a neuron receives a binary pattern that
represents the truth values for a set of input propositions
(represented by the presynaptic neurons).

▶ Inputs are linearly weighted by synaptic strengths, followed by
a thresholding operation, z(t) = ϕ(I (t)− θ), where θ is a
threshold parameter and ϕ(·) is a step function.
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Logical universality

A variety of logical functions can be implemented with different
choices of thresholds and weights.
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z1 z2

z3
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0 1 0
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z3
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1 0
1 0
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Logical universality

▶ More complex functions can be built from these simple
elements.

▶ For example, a NAND (“not and”) function can be built by
composing the AND and NOT functions.

▶ This construction is significant because the NAND function is
a universal element—all other Boolean functions can be
constructed out of only NAND functions.
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Computational universality

▶ Logical universality says that we can implement any logical
function with a set of primitives, but it does not say that we
can implement any computation.

▶ Consider the following problem: determine whether the first
and last inputs in a sequence are the same. What happens
when the sequence can be of indeterminate length?

▶ Here the McCulloch-Pitts neural circuit runs into trouble. It
could run out of neurons if the sequence is long enough—a
finite network cannot handle arbitrarily long sequences
without additional memory.
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Computational universality

Two solutions: read-write memory (left) and recurrence (right).
McCulloch-Pitts circuits with these augmentations can implement
a universal computer.

z1 z2

z3

1 0 1 1 …

writeread

z1 z2

z3

External memory Recurrence



Universal function approximation

▶ Instead of binary outputs, we can also build networks that
output continuous values. What kinds of functions can these
approximate?

▶ Under some assumptions, it can be shown that circuits with
continuous outputs can approximate any continuous function
(technically the input must be from a “compact” subset of
RN).
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Study question

Compare the three notions of universality (logical, computational,
and function approximation). How do they differ in scope and
implications?



Summary

▶ Networks of LIF neurons furnish our basic set of primitives for
computation.

▶ These primitives are (in principle) powerful enough to
implement any logical function, digital computation, or
smooth continuous function.
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